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Abstract

In this paper, we study how professional human decision-makers use predictive artificial

intelligence (AI). Using a rich decision-level data set from the maintenance of heavy-duty

trucks, we document how the repair decision-making of expert technicians changes with

the introduction of an AI tool designed to predict truck breakdowns. To quantify the effects

of this AI tool on decision-making quality and fleet outcomes, we develop and estimate a dy-

namic discrete choice model of technician decision-making. The resulting estimates show

that technicians with the AI tool exhibit a substantially better understanding of breakdown

risk than those without the tool. This improvement in the ability to predict breakdowns

translates into better decision-making and better outcomes: The AI tool reduces the total

costs that technicians incur by $240-$480 per truck per year. We show that this repre-

sents 85% of all of the cost savings that could feasibly be achieved through improvements

in decision-making quality; that is, with the AI tool, technicians are close to the efficient

frontier. The AI tool enables these cost savings by helping technicians avoid doing costly,

unnecessary repairs.
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1 Introduction

Every day, professional human decision-makers throughout society face choices that deter-

mine socially and economically important outcomes. Yet technology is rapidly reshaping their

decision-making processes; while these professionals would traditionally have been guided

solely by their own expertise, human decision-makers in a variety of settings now work in col-

laboration with predictive artificial intelligence (AI) tools. In medicine, a doctor deciding on

a treatment plan might consult an AI tool that predicts the presence of a tumor; in finance,

a banker facing a loan approval decision might rely on an AI predictor of default risk; and,

in various industrial settings, a technician deciding whether or not to repair a machine might

turn to an AI tool that predicts the of likelihood of a breakdown.

AI is undoubtedly a powerful tool for prediction. Indeed, in many domains, algorithms

have achieved predictive ability superior to that of expert humans.1 Nevertheless, it is a pri-

ori unclear whether providing humans with AI predictions necessarily improves the quality

of decision-making; this is ultimately determined by how humans use—or misuse—these AI

predictions.2

In this paper, we study the role of a high-quality predictive AI tool in the decision-making

of technicians charged with the maintenance of heavy-duty trucks.3 Observing the engine re-

pair decisions that technicians make both before and after its introduction, we explore how

technicians use this tool. By analyzing the AI tool’s effects on the quality of technicians’ repair

decisions and fleet outcomes, we quantify the economic value it adds. To that end, we esti-

mate a dynamic structural model of technician decision-making. By exploiting comprehensive

truck-generated data, we are able to separately identify and estimate costs and technicians’

beliefs about breakdown risk. Our estimates show that with the AI tool, technicians’ beliefs

more accurately reflect the true risk of breakdown. This results in an improvement in tech-

nician decision-making, leading to a substantial ($240-$480) reduction in annual per-truck

maintenance expenditures.

This analysis makes use of data from a large private fleet of heavy-duty trucks, which, in

early 2020, introduced an AI tool—which we refer to as PredictFix—that provides technicians

with algorithmically-generated alerts indicating when a truck has a high risk of breaking down.

We observe not only technicians’ engine repair decisions but also the AI-generated alerts tech-

1To cite just a few examples, Jalalifar et al. (2022) develop an algorithm that outperforms the ability of
oncologists to predict the effects of radiology on brain tumors; Irvin et al. (2019) train a model that predicts the
presence of chest pathologies (e.g., pneumonia) better than radiologists; Van Binsbergen et al. (2023) train a
model that forecasts equity prices more accurately than professional analysts.

2Indeed, some evidence lab experiments, including that of Agarwal et al. (2023), shows that assistance by a
high-quality AI tool does not, on average, improve the quality of decision-making.

3Heavy-duty trucks are sometimes also called tractor-trailers, semi trucks, or eighteen-wheelers.
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nicians receive and a rich set of truck-generated data, including all of the sensor measurements

and fault codes available to technicians. Taken together, these signals give us a comprehensive

and high-dimensional description of the state of every truck at every point in time. Section 3

provides a detailed description of these data, as well as the PredictFix AI tool.

We begin our empirical analysis in Section 4 by presenting descriptive evidence on the

setting, the PredictFix AI tool, and how technicians use this tool. First, we show that Predict-

Fix is a high-quality predictor of breakdowns. Next, we show that technicians’ engine repair

decisions are moderately responsive to the alerts that PredictFix generates: a PredictFix alert

increases the probability of a same-week engine repair by 18.0pp (for reference, the uncondi-

tional weekly repair probability is 10.5%). These two facts would seem to suggest that Predict-

Fix improves decision-making quality, and therefore outcomes; however, comparing outcomes

for the “pre period” and the “post period,” we find no significant change in the frequency of

either repairs or breakdowns. This suggests that the effects of PredictFix may be confounded

by changes in other payoff-relevant variables that coincided with PredictFix’s introduction.

Consistent with this hypothesis, we present suggestive evidence that technicians faced higher

repair costs in the post period than in the pre period.

To quantify the value of PredictFix while controlling for costs, in Section 5, we develop a

dynamic structural model of technician decision-making. At the heart of the model is a simple

trade-off between the technician’s perceived risk of a breakdown and the cost of doing a repair.

By taking this model to the data, we can estimate both the technician’s beliefs about breakdown

risk and their costs, both before and after PredictFix’s introduction. In our setting, separate

identification of these beliefs and costs is made possible by the richness of our comprehensive,

high-dimensional truck-generated data. This richness leaves little scope for private informa-

tion, the existence of which makes separate identification of cost and beliefs impossible in the

kind of settings where human decision-making and AI have been studied previously. Yet this

high-dimensional description of the state also presents a challenge for estimation, as standard

techniques for estimating dynamic models are ill-suited to such high dimensionality. To over-

come this challenge, we develop an approach that builds on the insights of Rust (1987), Hotz

and Miller (1993) and Arcidiacono and Miller (2011) and enables us to express the dynamic

component of the technician’s payoff as a closed-form function of period-ahead conditional

choice probabilities. Section 6 describes how we carry out this approach in practice to recover

estimates of costs and the technician’s beliefs about breakdown risk.

Section 7 compares our estimates of beliefs and cost conditions before versus after Pre-

dictFix’s introduction. First, to understand how PredictFix affects technicians’ beliefs about

breakdown risk, we evaluate the quality of technicians’ perceived risk of breakdown—both

with and without PredictFix—as a predictor of actual breakdowns. We find that, with Predict-
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Fix, technicians exhibit a substantially better ability to predict breakdowns (AUC-ROC is 0.704

with PredictFix versus 0.598 without PredictFix).4 Second, we present our costs estimates,

which show that both the mean and the variance of repair costs are higher in the post period

as compared with the pre period.

Finally, in Section 8, we use the estimated dynamic model to evaluate a counterfactual in

which we simulate introducing PredictFix while holding cost conditions fixed. This enables

us to quantify the value of PredictFix in terms of the change in total expenditures that results

from PredictFix’s effect on technician decision-making. We find evidence of a substantial im-

provement: technicians with PredictFix achieve a reduction in total engine maintenance ex-

penditures of $240-$480 per truck per year relative to those without PredictFix. These cost

savings—which represent 85% of all the cost savings that could feasibly be achieved with im-

proved repair decision-making—are the result of a reduction in expenditures on repairs, not a

reduction in the frequency of breakdowns. This highlights that, even though the fleet’s man-

agement team adopted PredictFix with the goal of helping technicians identify when the risk

of breakdown is high (as indicated by an alert), it plays an even more valuable role in helping

technicians identify when the risk of breakdown is low (as indicated by the absence of an alert).

The paper proceeds as follows: Section 2 summarizes the related literature and our contri-

bution. Section 3 describes our setting—the maintenance of heavy-duty trucks—and the data

we use to analyze technicians’ use of PredictFix in this setting. Section 4 presents descriptive

evidence in the form of five key facts, which highlight critical features of the setting and be-

gin to shed light on technicians’ use of PredictFix. Section 5 develops a dynamic structural

model of technician decision-making suitable for empirical analysis. Section 6 describes how

we estimate this model. Section 7 presents key estimates, shedding light both on costs and on

technicians’ ability to predict breakdowns with and without PredictFix. Section 8 presents the

results of the counterfactual analysis that speaks to the value of PredictFix. Finally, Section 9

concludes the paper.

2 Literature review

Our paper primarily contributes to the emerging empirical literature on predictive algo-

rithms as inputs to decision-making processes.5 This literature comprises both experimen-

4AUC-ROC, which refers to the area under the receiver operating characteristic (ROC) curve, is a quantitative
measure of the quality of a continuous predictor of binary outcomes. A value closer to 1 indicates a higher-quality
predictor. See Section 4.1 and Appendix B.1 for a discussion of ROC curves.

5There is also a closely related and more extensive empirical economics literature on decision-making under
uncertainty in which algorithms are not the focus. Papers in this literature include Mullainathan and Obermeyer
(2022), Currie and MacLeod (2020), Abaluck et al. (2020), and Chandra and Staiger (2007).
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tal and observational studies. Experimental work within economics includes Agarwal et al.

(2023), who find that providing radiologists with AI prediction does not improve the quality

of their diagnoses on average. Experimental work in the medical and computer science litera-

ture includes Tschandl et al. (2020) (skin cancer), Kim et al. (2020) (breast cancer), Reverberi

et al. (2022) (colon cancer), and Jakubik et al. (2022) (loan approval decisions). A smaller

number of papers use observational data from settings where predictive algorithms were actu-

ally implemented to study how human decision-making changes in the presence of algorithmic

prediction. Within economics, Stevenson and Doleac (2022) and Angelova et al. (2022) study

how judges use risk assessment tools in making sentencing and pretrial detention decisions.

Neither paper finds evidence that the risk assessment tool led to improvements in relevant

outcomes, such as public safety or incarceration rates. Related, though less directly relevant

to our paper, Albright (2023) studies the effect of algorithmic recommendations on judge’s bail

decisions.6 Outside of economics, observational studies on this topic include De-Arteaga et al.

(2020), who study how child welfare workers use a predictive algorithm in their screening

decisions.

Relative to this existing work, we make three contributions. First, we estimate the dollar-

denominated value of a predictive AI tool by quantifying the social welfare gain (or loss) result-

ing from the effects of the AI tool on the quality of technician decisions. This is made possible

both by our setting—placing a dollar value on social welfare effects is more straightforward

in truck maintenance than in, for instance, the judicial context—and by our use of a decision

framework to quantify the costs and benefits of technician decisions. Second, we study how

AI prediction changes human decision-making in a context where payoffs are inherently dy-

namic. In our setting, a technician makes a repair decision for a truck not only this week, but

also next week, the following week, etc. In contrast, previous studies have focused on static

settings where, for instance, a judge or radiologist has a one-off interaction with a defendant

or patient. To account for dynamics in our quantification of the effects of the predictive AI

tool, we develop and estimate a dynamic model of technician decision-making. Finally, we

study the use of predictive AI in a new and economically significant setting: the maintenance

of heavy-duty trucks, which play a central role in the US goods economy. Although the settings

of previous research (e.g. criminal justice and medicine) are undeniably of great social impor-

tance, our paper provides insight into the use of AI tools in the industrial settings in which they

are increasingly being adopted.7

6PredictFix, the AI tool we study, provides technicians with algorithmic predictions, rather than recommen-
dations. In our setting, payoffs depend on both breakdown risk and costs. PredictFix provides technicians with
a signal about breakdown risk, but in no way incorporates information about costs. It is up to the technician to
combine PredictFix’s output with her evaluation of costs to arrive at a repair decision.

7Zolas et al. (2021) note that, in the 2018 Annual Business Survey, the four-digit NAICS code industries
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Methodologically, our paper draws upon the literature on estimating dynamic discrete

choice models. Building on the insights of Rust (1987), Hotz and Miller (1993), and Arcidia-

cono and Miller (2011), we describe and demonstrate an approach to estimating DDC models

in high-dimensional settings. Our approach obviates the need to estimate the transition pro-

cess, which is generally infeasible for a high-dimensional state variable. Instead, we employ a

distributional assumption under which the dynamic component of payoffs can be expressed as

a closed-form function of objects that are feasibly estimated from high-dimensional data.

We also contribute to an empirical literature on the trucking industry. Most closely related

are papers that study the introduction of new technologies in trucking (e.g., Hubbard (2000,

2003); Baker and Hubbard (2003, 2004); Yang (2022); Armitage et al. (2023)) and those that

study the maintenance of fleet vehicles (i.e., Rust (1987)). Other economics papers related to

trucking include Rose (1985, 1987), Hubbard (2001), and Harris and Nguyen (2021, 2022).

Finally, our paper can be thought of as continuing a long industrial organization tradition of

single-firm productivity case studies. The goal of such studies is to estimate productivity over

time and, in some cases, to explore the determinants of productivity’s evolution. Examples

include Gort and Sung (1999), Benkard (2000), and Hendel and Spiegel (2014). Our analysis

of the effect of a predictive AI tool on the quality of technician decision-making is analogous

to estimating the productivity of the fleet’s engine maintenance operation before and after the

introduction of the tool.

3 Heavy-duty truck maintenance: Setting and data

We analyze engine repair decisions made by technicians responsible for a fleet of heavy-duty

trucks, which provides an ideal setting for studying how professional human decision-makers

use a predictive AI tool. Heavy-duty trucks, like many modern industrial equipment, produce

high-quality, high-dimensional data as a byproduct of regular operations. Such rich data, which

contain valuable information on breakdown risk, both enables the training and application of

the predictive AI tool and provides us with a comprehensive description of truck states.

3.1 Setting: The fleet, the technician’s problem, and the algorithm

Trucks play a central role in the US goods economy, transporting more than 72% of all

domestic freight by volume.8 Fulfilling this role, however, requires that trucks be kept in good

working condition; failure of any of the thousands of components of a truck can result in a

reporting the highest level of adoption of machine learning are “Metalworking Machinery Manufacturing” and
“Machine Shops; Turned Products; Screw, Nut and Bolt Manufacturing.”

8Bureau of Transportation Statistics Freight Facts and Figures 2017, Department of Transportation.
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costly breakdown. We study engine repair decisions made by several hundred technicians at a

large private fleet. The fleet is owned and operated by a firm—which we will refer to using the

pseudonym PFC (private fleet company)—that manufactures and distributes consumer goods

across the US. We focus in particular on the fleet’s heavy-duty trucks.

In making repair decisions, technicians are informed by rich truck-generated data. Modern

heavy-duty trucks have as many as several hundred sensors, each monitoring a specific com-

ponent. Together with an onboard computer, these sensors produce a constant stream of mea-

surements and fault codes, which PFC makes available to its technicians. Prior to March 2020,

PFC’s technicians were tasked with using this data—without any algorithmic assistance—to

predict breakdown risk and make engine repair decisions. This is a challenging task, both be-

cause trucks are complex machines and because the set of truck-generated data is so vast; in a

typical day, a heavy-duty truck produces about 4,000 sensor measurements and 10 fault codes,

making constant human monitoring of all of these signals infeasible.9

To assist technicians with this task, in March 2020, PFC purchased an AI breakdown-

prediction tool—which we will refer to as PredictFix—from a technology firm specializing in

industrial machine learning prediction. Using a truck’s sensor measurements and fault codes

as input, PredictFix generates an alert when its predicted risk of failure for a component—

something likely to result in an engine breakdown—is high. For example, there are Pre-

dictFix alert categories that indicate a high risk of engine overheating, cylinder head failure,

and coolant leak. Each alert comes with an associated “severity” level, either high-severity or

medium-severity.10 Note that, since PredictFix alerts are deterministic functions of sensor and

fault data that are also available to technicians, PredictFix does not provide technicians with

new information on the state of the truck; rather, it provides the same information in a form

that is potentially easier for technicians to interpret.

We think of PFC’s objective as minimizing a (broadly defined) notion of costs. Repair and

breakdown costs include both tangible and intangible components. Tangible costs include

labor and materials; when a breakdown occurs, tangible costs may also include towing costs

and the cost of leasing a temporary replacement truck. Intangible costs include the opportunity

cost of a truck not being on the road and the shadow cost of constraints imposed by each PFC

facility’s capacity to do repairs. In addition, when a breakdown occurs, PFC incurs potentially

large disruption costs. The firm maintains explicit and implicit service-level agreements with

retailers; failure to deliver product on time due to a breakdown may damage PFC’s valuable

9A typical technician is responsible for 30-60 trucks.
10Note that these severity level labels are not an output of the algorithm. Rather, the PredictFix fleet man-

agement team assigned these labels to each of the PredictFix alert categories. For example, of the three alert
categories listed above, they labeled engine overheating and cylinder head failure as high-severity and labeled
coolant leak as medium-severity.
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relationships with retailers. Additionally, breakdowns can cause substantial inconvenience to

drivers. PFC’s fleet management team views the market for driver talent as highly competitive,

so retaining drivers is a high-priority objective. For these reasons, disruption costs often exceed

the tangible monetary costs of a breakdown. For a discussion of technician incentives and

possible agency issues, see Appendix A.

3.2 Data

To understand technician decision-making, we study how they map truck-generated data

and PredictFix alerts to repair decisions. This analysis requires data on sensor measurements,

fault codes, and PredictFix alerts, as well as data on engine repair and breakdown events.

We obtain data on sensor measurements and fault codes from the portal that technicians

use to view these truck-generated data. We thus observe all of the quantitative data in the

technician’s information set and have a comprehensive description of the state of each truck

at each point in time. Our analysis uses this sensor and fault data for two disjoint time pe-

riods. The first, September 2019 through March 2020, covers the six months immediately

before the introduction of PredictFix—the pre period for our analysis. The second, March 2021

through November 2022, covers the twenty months starting one year after the introduction of

PredictFix—our post period.11

Figures 1 and 2 give a sense of the high frequency and enormous scale of the truck-

generated data available to technicians. Figure 1 shows the pattern of measurements for a

selected set of sensors on one truck over a 24-hour period. Panel (a) of Figure 2 shows the

distribution of the number of sensor measurements per truck-month; the median truck-month

has about 100,000 sensor readings.

A truck’s on-board computer translates sensor measurements into fault codes using a set

of several thousand factory-programmed rules. For instance, a "Turbocharger compressor in-

let temperature" fault code would be generated by an unusually high temperature reading.

Meanwhile, a "Gas supply pressure—Data valid but below normal operational range" fault

might result from an unusually low pressure reading, pointing to potential fuel system issues.

As illustrated in Figure 2 (b), the median truck has 136 fault codes per month, but the distri-

bution has a heavy right tail.12 While a fault code can indicate a serious problem, the rate of

false positives is, according to technicians, extremely high. Responding to every fault would

not only be infeasible but also sub-optimal.

11The range of dates was dictated by a key constraint: Due to the enormous volume of fault and sensor data,
PFC does not generally retain more than six months of these data at a time. Fortunately, PFC’s telematics software
provider was able to restore a six-month snapshot of older data, corresponding to our pre period.

1221.6% of truck-months register over 500 fault codes; 10.0% exceed 1000.
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In addition to data on sensor measurements and fault codes, our analysis also uses data

on PredictFix alerts. For each alert, we observe the truck identifier, the time of the alert, the

component-specific model that triggered the alert, and the corresponding severity level. Figure

2 (c) illustrates the frequency of these alerts; of all truck-months after March 2021, about 40%

have at least one PredictFix alert.

Figure 1: Sensor measurements recorded over the course of a day: An example

Acceleration side to side
Acceleration up down
Barometric pressure

Brake pedal on
Coolant level

Cranking voltage
Engine intake manifold 1 temp.

Engine load
Engine oil temperature

Engine shutdown by idle timer
Engine speed

Incremental distance
Longitudinal acceleration

Turbocharger intake pressure

5 10 15 20 25
Hour

S
en

so
r

0 102030Number of measurements

Notes: This figure illustrates the incidence of sensor measurements recorded for one truck over the course of a
day. The y-axis lists a subset of fourteen onboard sensors; for each sensor type and each ten-minute interval, the
color of the corresponding cell indicates the number of sensor measurements recorded. Based on the pattern of
these sensor readings, we can see that the truck was actively in use from about 11 AM until midnight and that the
readings for each sensor were recorded periodically throughout that period. As this example illustrates, sensor
measurements are high-frequency and track component performance (e.g. engine cranking voltage, engine man-
ifold pressure), driving patterns (e.g., speed, acceleration, braking) and environmental conditions (e.g. outside
air temperature and pressure).

Taken together, sensor measurements, fault codes, and PredictFix alerts give technicians—

and us—a rich set of data on the state of the fleet’s trucks. For the periods described above

and the set of about 700 heavy-duty trucks used in our analysis, we observe about 1.3 billion

sensor measurements, 8.3 million fault codes, and nearly 3,000 PredictFix alerts.

Finally, we make use of PFC’s fleet maintenance records. These records are both comprehensive—

they describe every maintenance event for every vehicle in the fleet—and rich in detail—for

every event, they list dates, times, technician identifiers, the reason for the event, the vehi-

cle systems and components involved, and the internal accounting costs of labor and parts
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Figure 2: Number of faults, sensors, and PredictFix alerts per truck-month
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Notes: These histograms contrast the frequency of truck-generated fault codes and sensor readings with the
frequency of algorithm-generated PredictFix alerts. Each histogram treats the unit of observation as a truck-week
and shows the distribution of the number of faults/sensors/alerts per truck-week. Note that the x-axes of Panels
(a) and (b) use a log scale.

for each constituent line item. In evaluating technician decision-making, we want to focus

on repairs that are elective, i.e., performed at the discretion of the technician. Therefore, our
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empirical definition of a “repair” excludes planned preventative maintenance, which follows a

predetermined schedule.

Preparing our extremely granular continuous-time sensor, fault, alert, and repair data for

analysis requires discretizing time. To that end, we aggregate measurements for each sensor

and each fault code into a set of truck-week level statistics: for each sensor, we compute the

weekly total number of measurements, the weekly maximum measurement, the weekly min-

imum measurement, the weekly mean measurement, and the weekly standard deviation of

measurements. For each of the 334 most common fault codes, we count the number of times

this fault code occurs in a week.Table 1 presents the set of variables—a combination of truck-

generated data and truck history data—that, for the purpose of our analysis, comprises the

technician’s information set when predicting breakdowns. The model in 5, which refers to this

set of breakdown predictor variables as x , clarifies the role that breakdown predictions play in

technician decision-making.

Table 1: Variables relevant to breakdown prediction (x)

Maintenance history: Miles/weeks since last repair

Truck characteristics: Model year

For each of 334 fault codes: Weekly indicator
Three weeks of lagged indicators

Total faults: Total number of weekly faults
For each of 48 sensors: Weekly min, max, mean, std. dev., count

One week lag for each

Notes: This table outlines the set of variables constructed from the data that we consider as predictors of break-
down risk. These variables correspond to x in our model (presented in Section 5).

Table 2 describes the cleaned data sample. See Appendix D.1 for a description of the data

cleaning steps taken.

Table 2: Sample size

Pre Post
Number of trucks 530 693
Number of weeks 21 81

Truck-weeks 4,406 16,925

Notes: This table presents describes the data sample used in our analysis. The two columns represent, respecitively,
the pre period (before the implementation of PredictFix) and the post period (after the implementation of Pre-
dictFix).
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4 Descriptive evidence: Five facts

We begin our empirical analysis by presenting five key facts. The first two facts clarify the

nature of breakdown risk and the quality of PredictFix. The third and fourth facts quantify

technicians’ responses to PredictFix and changes in aggregate fleet outcomes. The fifth fact

sheds light on changes in cost conditions around the time of PredictFix’s introduction.

4.1 Fact 1: Breakdown risk is predictable.

Before studying the quality of technician predictions and decisions, we quantify the extent

to which the signals in the technician’s information set predicts breakdowns. To accomplish

this, we train a gradient-boosted decision tree (GBDT) model (Friedman, 2001)—a flexible

machine learning (ML) model that combines an ensemble of decision trees—to predict en-

gine breakdowns based on observable truck states.13 We use x to denote sensor, fault, and

maintenance history data and use π̂(x) to denote the GBDT model’s prediction of breakdown

risk.

To evaluate the quality of π̂ as a predictor of breakdowns, we use a common tool for eval-

uating ML predictions: the Receiver Operator Characteristic (ROC) curve. The ROC curve is a

production possibilities frontier (PPF) in the false positive rate (FPR)-true positive rate (TPR)

space. In our context, the true positive rate is the proportion of actual breakdowns that are

correctly predicted to be breakdowns, and the false positive rate is the proportion of actual

non-breakdowns that are incorrectly predicted to be breakdowns. The ROC curve illustrates

the set of (FPR, TPR) pairs that are achievable with binary classifiers constructed from π̂(x).
Naturally, a perfect (oracle) predictor would have (FPR,TPR) = (0,1); a completely uninfor-

mative predictor, meanwhile, would have an ROC curve on the 45-degree line. Thus, an ROC

curve further above the 45-degree line and closer to the (0,1) point indicates a higher-quality

predictor. For this reason, the area under the ROC curve (AUC or AUC-ROC) is commonly used

to quantify predictive quality, with AUC=0.5 indicating a completely uninformative predictor

and AUC=1 indicating an oracle predictor. (For a more thorough primer on ROC curves, see

Appendix B.1.)

Figure 3 presents the out-of-sample ROC curve for our breakdown predictor π̂(x).14 Its

AUC, 0.778, indicates that π̂(x), and therefore the state of the truck x from which it is con-

structed, contains substantial information about breakdown risk.15 Since x is observable to

13For details of the cross-validation and training of this model, see Appendix D.7.
14This is the out-of-sample ROC curve in the sense that the FPR and TPR values are computed using observations

that were not used in training the GBDT model.
15While this predictor is far from the oracle benchmark with AUC = 1, this is not at all surprising: trucks

are complex machines subjected to a wide array of human and environmental factors that are unobservable and
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technicians, this finding indicates that a technician (at least one with unlimited attention and

computational ability) could extract valuable information from x to inform her repair decision.

Whether actual technicians are able to do this—both on their own and when they are assisted

by PredictFix—is the central question of this paper, one that we address using estimates from

our structural model in Section 7.

4.2 Fact 2: PredictFix is a good predictor of breakdown risk.

Having established that breakdown risk is predictable, we next verify that PredictFix alerts

are indeed good predictors of breakdown risk. Building on the previous analysis, note that in

addition to the ROC curve, Figure 3 also shows the false positive and true positive rates for

PredictFix alerts, which are binary predictors of breakdowns. π̂(x) should fully exploit the

information on the state of the truck x to predict breakdowns, so the points of the ROC curve

represent the best achievable binary predictors of breakdowns given x and given the training

data we have.16 Since a PredictFix alert is a binary predictor that is also a function of x , the

position of the PredictFix points in the FPR-TPR space relative to the ROC curve indicates their

predictive quality relative to this optimal benchmark.

Looking at the y-coordinates (true positive rate) of the points in Figure 3, we can see that

21.4% of all breakdowns that occur in the post period are preceded by a high-severity PredictFix

alert. Looking at the x-coordinates (false positive rate), we can see that, in contrast, only 2.3%

of non-breakdown truck-weeks have a high-severity alert. Moreover, this point lies quite close

to (though not exactly on) the ROC curve. In short, a high-severity PredictFix alert is a very

good indicator of breakdown risk.

Perhaps more surprisingly, the point corresponding to medium-severity PredictFix alerts lies

much farther away from the ROC curve. While its location far above the 45-degree line indi-

cates that it is still informative about breakdown risk, the clear contrast between the quality of

the high- and medium-severity PredictFix alerts is a surprising feature of the setting. Although

studying the design of the PredictFix algorithm is beyond the scope of this paper, Appendix B.2

includes a discussion of possible reasons for this suboptimality.

These results show that PredictFix provides technicians with one nearly-optimal binary

predictor of breakdown risk. Is a single optimal binary predictor all the technician needs, or

would she benefit from combining this predictor with other variables related to breakdown

unpredictable by technicians and by us. In other words, we intuitively understand that there is a substantial degree
of irreducible uncertainty in the breakdown process, so no feasible predictor could achieve the oracle benchmark.

16This claim also assumes optimal model selection and hyperparameter tuning. Further improvements in out-
of-sample fit may be possible using a different ML model (e.g., a neural network), better feature engineering, or
better tuning of hyperparameters.
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Figure 3: PredictFix Alerts as Predictors of Breakdowns
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Notes: The ROC curve in this figure illustrates the quality of π̂(x) as a predictor of breakdowns. π̂(x) is the output
of a GBDT model trained to predict breakdowns. The ROC curve is constructed using observations excluded from
GBDT training, so this ROC curve captures the out-of-sample predictive quality of π̂(x). The figure also reports the
AUC, or area under the ROC curve, a common quantitative measure of a classifier’s quality. The purple and orange
points illustrate the quality of PredictFix alerts as predictors of breakdowns. For each point, the x-coordinate
indicates the predictor’s false positive rate (the proportion of non-breakdown weeks that have a PredictFix alert),
and the x-coordinate indicates the predictor’s true positive rate (the proportion of breakdown weeks that have
a PredictFix alert). The purple point corresponds to high-severity alerts, and the orange point corresponds to
medium-severity alerts. For each, the FPR and TPR were calculated using the observed breakdown outcomes in
the post-period data (there are no PredictFix alerts in the pre period).
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risk (e.g., sensor and fault variables)? The model presented in Section 5 helps to clarify this.

Using this model, we show in Appendix B.3 that, because of variation in the relative costs of

repair and breakdown, other predictors still play an important role.

4.3 Fact 3: Technicians respond to PredictFix but also ignore many alerts.

Having established that high-priority PredictFix alerts are a high-quality predictor of break-

down risk, we now ask how technicians respond to these alerts. To do so, we estimate an event

study regression that captures the technician’s propensity to do an engine repair around the

time of an alert:

Repairi,t = α0 +
∑

k∈{pre,post}

5
∑

τ=−3

β k
τ
1{t ∈ Tk}ÛPredictFix

high

i,t−τ +αi + γt + εi,t (1)

where Repairi,t is an indicator for a technician doing an engine repair on truck i in week t; Tpre

and Tpost represent the sets of weeks in the pre period and post period, respectively; and αi and

γt represent truck and week fixed effects, respectively. The covariates of interest are leads and

lags of high-severity PredictFix alerts indicators.17 Note that we seek to estimate the responses

to these alerts (captured by the coefficients {β k
τ
}) separately for the pre and post periods.

Because we do not observe actual PredictFix alerts in the pre period, we instead use im-

puted (or predicted) PredictFix alerts in estimating (1).18 PredictFix alerts are generated by

a deterministic function of sensor measurements and fault codes; to impute PredictFix alerts,

therefore, we train a GBDT model to learn this function. The trained model predicts Predict-

Fix alerts in out-of-sample data with a very high degree of accuracy: the ROC curve for this

predictor (presented in Figure 13 in Appendix D.5) has an AUC of 0.977.19

Figure 4 presents the estimated event study coefficients {β k
τ
} from (1).20 In this figure,

17We present the results of the corresponding analysis for medium-severity PredictFix alerts in Appendix B.4.1.
18For the analysis of the post period using actual, rather than imputed, PredictFix alerts, see Appendix B.4.2.
19Using a comparison of GBDT model fits in Figure 14, we also present evidence that the PredictFix algorithm

is stable over the course of the post period, i.e., the PredictFix algorithm is not re-trained or updated in this period.
20While the outputs of the GBDT models are continuous predictors of the probability of a PredictFix alert, this

event study exercise calls for binary predictors, i.e., indicators for whether a PredictFix alert would have occurred
for truck i in week t. Converting a continuous predictor to a binary predictor requires selecting a threshold
η ∈ [0, 1]. We select the value of η that makes the predicted alert frequency equal to the actual frequency of alerts
in the post period. A valid concern with this regression might be that noise in the predicted PredictFix variable
(resulting from the fact that our prediction of alerts is imperfect) might bias the event study estimates. In general,
we would expect such noise to bias the estimated effects toward zero. However, comparing the estimated effects
in Figure 4 to those in Figure 10 (which is estimated using actual PredictFix alerts), we see that the estimated

post-period same-week effect is actually slightly larger in the former. The fact that usingÛPredictFixi,t , rather than
PredictFixi,t , as a regressor results in a larger, rather than smaller, estimate of βpost

0 speaks against the notion that
prediction error plays a significant role in shaping our event study estimates.
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Figure 4: Event Study: Response of repairs to (predicted) PredictFix alerts
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p = 0.000138
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Notes: This figure shows the estimated coefficients {β k
τ} from equation (1). βpre

−1 and βpost
−1 are normalized to zero,

although the inclusion of week fixed effects means that differences in the average probability of repair across the
pre and post periods are absorbed. In estimating (1), we use only observations not used in training the GDBT
model that predicts PredictFix alerts. This means that we use all observations from the pre period, but only test
sample observations from the post period. This eliminates the asymmetry between the in-sample/out-of-sample
composition of the pre-period and post-period data that would result if we estimated (1) on the full sample.

we see that β̂pre
0 = 0.083, which indicates that, in a pre-period week when a PredictFix alert

would have occurred, the technician is 8.3pp more likely to do an engine repair than she was

the week before. Since there were no PredictFix alerts in the pre period, this is not evidence of

technicians responding to alerts; rather, it indicates that technicians in the pre period responded

to patterns in sensor measurements and fault codes that PredictFix would identify as high

risk. In the post period, we see that β̂post
0 = 0.263, significantly larger than the pre-period

response; the difference of 18.0pp indicates that PredictFix alerts change technician behavior,

with technicians responding to alerts with an increased propensity to perform engine repairs.

In relative terms, the estimated 18.0pp response is large, as the unconditional probability

of a repair for a given truck-week is 10.5%. However, in absolute terms, this response is small.

It is certainly not the case that a PredictFix alert always leads to a repair; in fact, the probability

of a repair for truck i in week t conditional on a high-severity PredictFix alert for truck i in

week t is only 36.6%.

This low responsiveness can be interpreted in several ways. First, it may result from the

technician exercising discretion. For instance, he may consider costs as well as PredictFix alerts

when deciding if a repair is warranted. In some cases, despite a PredictFix alert, high repair

cost might make a repair suboptimal. Second, various behavioral forces may play a role. For
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instance, the technician could be inattentive, always responding to a PredictFix alert when

she notices one, but failing to notice most alerts. Alternatively, low responsiveness could be

explained by the technician misunderstanding the process that generates PredictFix alerts.

These two interpretations—optimal use of discretion and mistakes resulting from behav-

ioral forces—are both plausible ex ante, but have vastly different normative implications. In

Section 5, we will develop a model of technician decision-making and describe the conditions

under which costs and technician beliefs about breakdown risk are separately identified. Doing

so will allow us to untangle these two explanations, drawing conclusions about the quality of

technician decision-making and the extent to which it is improved by PredictFix.

4.4 Fact 4: No change in aggregate outcomes.

Having established that technicians are—at least somewhat—responsive to PredictFix alerts,

we examine whether any aggregate effects of PredictFix—either positive or negative—are im-

mediately apparent in choice and outcome data. Using a simple linear probability model, we

compare the average frequency of repairs and breakdowns in the pre and post periods:

yi t = β0 + βPost1{t ∈ Tpost}+ εi t , (2)

where yi t is an indicator for an event—either a repair or a breakdown—for truck i in week

t. The coefficient of interest, βPost, captures the difference in pre-period versus post-period

repair/breakdown frequencies. Estimates, which are presented in Table 3, show no statistically

significant difference in repair or breakdown frequency across the periods.

Table 3: Differences in frequency and responsiveness across periods

(1) (2)
Repair Breakdown

Post -0.00270 0.00305
(0.00496) (0.00206)

Constant 0.108∗∗∗ 0.0143∗∗∗

(0.00436) (0.00181)
N 22127 22127

Notes: Standard errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001. The two columns of this table
report estimates for (2) with yi t = Repairi t and yi t = Breakdowni t , respectively.

In light of our previous facts, this finding is perhaps surprising. Fact 3 indicates that techni-

cians respond—at least to some extent—to PredictFix alerts. Fact 2 indicates that these alerts
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are high-quality predictors of breakdown risk. Taken together, these findings would seem to

suggest that technicians in the post period would be more responsive to breakdown risk and

that this might lead to better outcomes (fewer repairs and/or fewer breakdowns). However,

Table 3 indicates that this is not the case; if anything, the frequency of breakdowns seems to be

slightly higher in the post period. Fact 5, which offers evidence on differences in costs between

the pre and post periods, helps rationalize these findings.

4.5 Fact 5: Repair costs are higher in the post period.

Regression (2) in the previous subsection provides a simple comparison of pre-period and

post-period frequencies. The estimated coefficient βPost therefore captures not just the effects of

PredictFix, but also the effects of other factors that changed between the pre and post periods.

Given the manifold effects of the COVID-19 pandemic—on demand patterns, labor availability,

and truck component availability—it seems plausible that technicians in the post period faced

different cost conditions and potentially exogenously higher breakdown risk.

To investigate differences in costs, we once again estimate regressions of the form of (2),

regressing two cost-related variables on a post-period indicator. Table 4 presents the estimated

coefficients from these two regressions.

First, to analyze changes in tangible repair costs, such as labor and materials, we regress

work order costs from the maintenance records on a post-period indicator and facility fixed

effects. The results, presented in column (1) of Table 4, show that tangible repair costs were,

on average, $128 (20.6%) higher the post period. Furthermore, cost heterogeneity is also

greater in the post period: the interquartile range for work order costs is $585, compared to

$471 in the pre period.

Second, as one intangible component of repair costs, we consider facility busyness as mea-

sured by the ratio of a facility’s open work orders to the number of trucks assigned to that

facility. If the repair capacity at a facility is proportional to its number of assigned trucks, this

ratio indicates the utilization of repair capacity. A higher ratio suggests that the facility’s ca-

pacity constraint is closer to binding, imposing a shadow cost of repair. Coefficient estimates

for the regression with the log of this ratio on the left-hand side, presented in column (2) of

Table 4, show that this measure is 12.0% higher on average in the post period. Furthermore,

the post period also features greater heterogeneity in facility busyness: the interquartile range

for the log open work order ratio is 17% higher in the post period than in the pre period.

Both findings indicate that technicians faced higher repair costs in the post period than

in the pre period. Given our objective of evaluating PredictFix’s effect on technician decision-

making, these findings highlight the importance of controlling for inter-period cost differences.
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Table 4: Differences in repair costs between the pre and post periods

(1) (2)
Tangible cost ($) log(Open work orders per truck)

Post 128.1∗∗∗ 0.120∗∗∗

(34.75) (0.00550)

Constant 599.3∗∗∗ -0.371∗∗∗

(30.21) (0.00488)
N 8089 21331

Notes: Standard errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001. The two
columns of this table report estimates for (2) with yi t = Tangible cost of work orderi t and yi t =
log
�

Number of open work ordersi t/Number of trucksi t

�

, respectively. The first column speaks to pre-post dif-
ferences in tangible costs, as captured by the costs of work orders listed in the fleet maintenance records. The
second column speaks to pre-post differences in the bindingness of capacity constraints, whose shadow costs rep-
resent a component of intangible costs. Both regressions include facility fixed effects.

To that end, the next section presents a formal model of technician decision-making and de-

scribes the conditions under which costs and beliefs are separately identified. By taking this

model to the data (in Section 6) and using the estimated primitives to evaluate counterfactuals

(in Section 8), we quantify and isolate the effects PredictFix.

5 Model of technician decision-making

In this section, we develop a structural model of technician decision-making centered around

a trade-off between the cost of doing a repair and the technician’s perceived risk of breakdown.

We begin by presenting a simple static version of the model and describing the assumptions

required for identification. Next, we introduce dynamics to account for the effect of a repair

decision on the state of the truck in future periods.

5.1 Static model

In a given week, a technician faces a binary choice, a ∈ {0, 1}: she must decide whether to

repair the truck (a = 1) or not (a = 0). Her payoff u(a, s; v, x) depends on her repair decision a

as well as the unknown potential breakdown outcome s ∈ {0, 1}, cost-related variables v, and

the state of the truck x . Without loss of generality, we normalize the payoff from no breakdown

and no repair to zero: u(0, 0; v, x) = 0 for all v, x . If the technician chooses not to do a repair
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and there is a breakdown, she incurs breakdown cost B: u(0, 1; v, x) = −B.21 If, on the other

hand, the technician chooses to do a repair, any potential breakdown is prevented. In this case,

she incurs the repair cost: u(1, 0; v, x) = u(1, 1; v, x) = −c(v, x). The payoffs for (a, s) ∈ {0, 1}2

are presented in Table 5.

Table 5: Static payoffs

Potential breakdown
s = 0 s = 1

Repair action
a = 0 0 −B
a = 1 −c(v, x) −c(v, x)

Since payoffs depend on the potential breakdown outcome s, the technician’s decisions

depend critically on her beliefs about the likelihood of a breakdown. The technician observes

x , a high-dimensional vector describing the state of the truck, and uses x to form a prediction

about the probability of breakdown. We do not impose a specific model of how the technician

forms her predicted probability of breakdown, which we denote ρ(x); we allow ρ(x) to differ

arbitrarily from the true probability of breakdown, which we denote π(x).
Multiple forces could generate this divergence. First, the technician may not fully observe x ,

perhaps due to limited attention. Second, even if the technician does fully observe x , she may

make mistakes in mapping x to breakdown probability. For instance, the technician could incur

some cost of effort for computation and optimally choose to exert a level of effort less than that

necessary to have ρ(x) = π(x). Alternatively, various behavioral biases or lack of experience

could prevent the technician from understanding the process that generates breakdowns. We

take no position on which of these forces shape the technician’s predictions and for now allow

ρ to differ arbitrarily from π.22

Having formed a prediction ρ(x), the technician then performs a repair if and only if

−c(v, x)> −ρ(x)B; or equivalently,

ρ(x)>
c(v, x)

B
≡ τ(v) (3)

21The assumption that the breakdown cost is constant reflects thinking of the team responsible for PFC’s fleet
maintenance operations. When asked how both they and the technicians perceive variation in breakdown costs,
they stated that neither they nor the technicians take this variation into account when making decisions. Note
that we are not asserting that we know the exact value of B or that the technician’s perceived cost of breakdown
B is the true cost of a breakdown.

22Note that while we are agnostic as to whether the technician’s breakdown risk predictions ρ are correct, we
assume that she knows the costs c(v) and B. This asymmetry between the technician’s knowledge of breakdown
risk (potentially imperfect) and her knowledge of costs (perfect) is driven by our question of interest: We want
to understand how technician decision-making is changed by PredictFix, a tool designed to predict breakdowns,
not costs.
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The function τ(v, x) captures the technician’s breakdown-risk threshold and is equal to the

ratio of the cost of a repair to the cost of a breakdown.

The simple decision rule in equation (3) shows that the technician’s choices are determined

by just two objects: the cost ratio τ(v, x) and the technician’s breakdown-risk prediction ρ(x).
To use this model as a tool to understand how PredictFix changes decision-making, we would

like to estimate both of these objects. However, here we encounter a common econometric

challenge: separately identifying preferences and beliefs. Overcoming this challenge will re-

quire three steps: a restriction on private information, an exclusion restriction, and a restriction

to identify level and scale.

First, we impose a restriction on private information. While we can identify a model in

which the technician has private information on either costs or beliefs, we cannot identify a

model in which the technician has private information on both. We therefore face a choice of

which of the two to impose a restriction on. In many settings, both options would be unattrac-

tive; however, the features of our setting make it natural to restrict the information underlying

beliefs. Recall that one of the extraordinary features of our setting is that we observe a rich

set of sensor measurement and fault code data. Because, taken together, these data provide

us with a comprehensive description of the state of the truck, it is natural to assume that no

private information enters the technician’s beliefs about breakdown risk. Formally,

Assumption 1 (No private information). Suppose ξ is observed by the technician but not by

the econometrician. Then, Pr (breakdown | x ,ξ) = Pr (breakdown | x) = π(x). Moreover, the

technician’s perceived risk of breakdown does not depend on ξ.

We can, however, still allow for private information on costs. In particular, we assume that

this private information takes the form of an additive idiosyncratic cost shock:

τ(v, x) = g(w, x) + ε (4)

where v = (w,ε), ε∼ iid Logistic (θ ), and w is observable by the econometrician. This implies

that the probability of a repair conditional on observables (w, x) is

p(w, x)≡ Pr (a = 1 | w, x) = Λ (θ [−g(w, x) +ρ(x)]) (5)

where Λ is the Logistic function.

Second, we impose an exclusion restriction. The intuition for identifying the model from

the choice data is that ρ and the unobservable component of g will be identified by observing

how repair choices respond to variation in x and variation in w, respectively. If there were

some variable z that were in both x and w and we observed the response of repair decisions
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to variation in z, we would not know whether to attribute that response to the effect of z on

beliefs or the effect of z on intangible costs. Assumption 2 states the condition required to

overcome this challenge:

Assumption 2 (Exclusion restriction). Suppose the cost-related variables w can be partitioned

as w= (w1, w2). The cost function g(w, x) is the sum of two components:

g(w, x) = g1(w1) + g2(w1, w2, x),

• a component g1(w1) that reflects intangible costs and only depends on w1, and

• a component g2(w1, w2, x) that reflects tangible costs.

The key restriction imposed by Assumption 2 is that there are no variables observed by

the technician that affect both intangible costs and breakdown-risk predictions. In our con-

text, this is a natural assumption, as the variables in w1—which includes facility fixed effects

and time-varying measures of a facility’s capacity for doing repairs—are purely economic in

nature. On the other hand, x—which includes sensor measurements and fault codes describ-

ing the physical state of the truck’s components, its usage, and the environment in which it is

operating—contains all of the observable variables that might plausibly affect the truck’s risk

of breakdown.23 For a full list of the variables in x , see Table 1 in Section 3.2; for a full list of

the variables in w1 and w2, see Table 10 in Appendix D.

Finally, to identify both levels and scales of costs (g) and beliefs (ρ), we require two restric-

tions on beliefs.24 To see why, note two features of equation (5). First, −g1(w1) and ρ(x) are

added together, which means that g1 and ρ are each only identified up to an additive constant

from choice data. Second, the scale parameter θ multiplies both g1(w1) and ρ(x), meaning

that θ , g1 and ρ are each only identified up to a multiplicative constant from choice data. We

can achieve separate identification by imposing two mild restrictions on beliefs.

Assumption 3 (Beliefs mean and minimum). The technician’s breakdown risk prediction func-

tion ρ satisfies the following conditions:

• The technician’s beliefs are correct on average, i.e., Exρ(x) = Exπ(x).

• There is some x ∈ X for which the technician believes that the risk of breakdown is zero,

i.e., minx ρ(x) = 0.

23Assumption 2 allows these variables to affect costs, but only through tangible costs. Since tangible repair
costs are recorded in the maintenance records, the function g2 can be estimated (outside of the model) directly
from data. For a description of how the empirical analog of this function is constructed, see Appendix D.

24Both costs and beliefs are partially identified under Assumptions 2 and 1 alone. For the formal result, see
Appendix C.1.
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The first of these restrictions says that, while technician’s perceived risk of breakdown for

any given state x may be wildly different from the true risk of breakdown, the average perceived

risk of breakdown over all states is equal to the average true risk of breakdown. The second

restriction imposes that there is some state x for which the technician believes there is no risk of

breakdown. Although these two restrictions put limits on ρ, it remains largely unrestricted. In

particular, Assumption 3 does not impose any restrictions on how the technician orders states by

risk. This flexibility is particularly important, as this ordering is what will determine the results

of our ROC curve-based analysis of how PredictFix changes the quality of the technician’s

breakdown-risk predictions (see Section 7.1).

Under this set of assumptions, the static model is identified from choice data:

Proposition 1 (Static identification). Consider the static choice model. Suppose g1(·) is a differ-

entiable function whose domain is a compact connected set W1, and Assumptions 1-3 are satisfied.

If the support of w1 conditional on each x ∈ X is equal to W1, then θ , g1(·) and ρ(·) are identified.

Proof. See Appendix C.3.2.

5.2 Dynamic Model

While the static model in the previous subsection captures the technician’s key trade-off—

between repair cost and breakdown risk—it does not account for the effect of the current

repair decision on the state in future periods. In this subsection, we rectify that shortcoming by

incorporating dynamics into the model. Furthermore, we describe an approach to estimating

this dynamic model from choice data that is feasible even when the state variable is high-

dimensional.

Accounting for the technician’s dynamic considerations requires taking a stand on the tech-

nician’s beliefs about the future. Recall that in the static model, the technician’s beliefs about

the risk of breakdown may be incorrect, i.e., ρ(x)
?
= π(x). We naturally assume that tech-

nicians also use their (potentially incorrect) beliefs about breakdown risk when evaluating

potential future payoffs; for example, if x i t+1 is a possible future state of truck i at time t + 1,

the technician at time t believes that the probability of breakdown in that state is ρ(x i t+1).
While the technician’s predictions of breakdown risk may be flawed, her understanding of

the state transition process is not. That is, she knows the true distribution of the next period’s

state (wi t+1, x i t+1) conditional on the current state (wi t , x i t) and her action ai t . This assump-

tion is not only standard, but necessary. The model could be identified with either technicians

having incorrect beliefs about breakdown risk or technicians having incorrect beliefs about

the transition process, but not both. Given that this paper focuses on how a predictive algo-

23



rithm shapes technicians’ predictions and decisions, assuming that technicians know the true

transition process is the natural choice.

Following standard notation from the literature on dynamic models with Markov transition

processes, va(wi t , x i t) denotes the technician’s payoff from action a, including the continuation

value (discounted by δ) but excluding the idiosyncratic cost shock ε; EVa(wi t , x i t) denotes the

ex-ante expected value function following action a, i.e., if the state in period t is (wi t , x i t) and

the technician chooses action a, her expected continuation value (before wi t+1, x i t+1, and εi t+1

are realized) is EVa(wi t , x i t). That is,

va(wi t , x i t) =







−ρ(x i t) if a = 0

−g(wi t , x i t) if a = 1
+δEVa(wi t , x i t) (6)

and

EVa(wi t , x i t) = E
�

max {v0(wi t+1, x i t+1), v1(wi t+1, x i t+1)− ε} | wi t , x i t , ai t = a
�

(7)

where the expectation in equation (7) represents a conditional expectation over the true tran-

sition process.

Relative to the static model, introducing dynamics adds just one additional term to the

expression for the conditional probability of repair. This term, EV1(wi t , x i t) − EV0(wi t , x i t),
reflects the effect of a repair in period t on future discounted perceived payoffs.

p(wi t , x i t) = Λ (θ [v1(wi t , x i t)− v0(wi t , x i t)])

= Λ (θ [−g(wi t , x i t) +ρ(x i t) +δ (EV1(wi t , x i t)− EV0(wi t , x i t))]) (8)

Keeping in mind our goal of estimating beliefs ρ and costs g, the question is how to take

equation (8) to the data. As is typically the case with dynamic discrete choice models, the

ex-ante value functions EV0, EV1 are not directly observable and must be computed. The chal-

lenges we face here arise from, first, the fact that EV0 and EV1 are non-separable functions

of wi t and x i t and, second, the fact that our state variable (wi t , x i t) is high-dimensional. This

high-dimensionality rules out some standard approaches to dealing with these ex-ante value

functions; in particular, the nested fixed-point approach of Rust (1987) is infeasible.

Instead, we will proceed by leveraging the insights of Hotz and Miller (1993), who showed

that the ex-ante value functions can be expressed in terms of choice probabilities, and Arcidi-

acono and Miller (2011), who showed that this relationship between ex-ante value functions

and choice probabilities can be further simplified in settings with finite dependence. In our
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context, finite dependence means that a repair is a renewal action in that it resets the non-

exogenously-evolving components of the state. Assumption 4 formalizes this idea:

Assumption 4 (Repair is a renewal action). The transition process of each component z of the

state variable (w, x) satisfies either of the following conditions:

(i) z resets after a repair, i.e., the conditional distribution of zi t+1 | ai t = 1, wi t , x i t does not

depend on (wi t , x i t); or

(ii) z evolves independently and exogenously, i.e., the conditional distribution of zi t+1 | ai t , wi t , x i t

only depends on zi t .

Moreover, at least one element of x satisfies (i), and all elements of w satisfy (ii).

For each component of our state variable (w, x), either condition (i) or (ii) is plausible. First,

all components of w—which includes the facility’s number of open work orders and the facility’s

number of trucks, as well as month and facility fixed effects—plausibly satisfy (ii). Second

and similarly, in x , weather-related sensor measurements (e.g., outside air temperature and

pressure) satisfy (ii) as do, (at least to a first approximation) truck odometer mileage.25 Finally,

the remaining components of x—which are primarily fault and sensor variables describing the

status of the engine—are likely to reset after a repair (and therefore satisfy (i)), as a repair

should (ideally) address any active issues.26

The benefit of Assumption 4 is that, under this assumption, the difference of ex-ante ex-

pected value functions becomes

EV1(wi t , x i t)− EV0(wi t , x i t) =
1
θ

�

E [log p(wi t+1, x i t+1) | ai t = 0, wi t , x i t]

−E [log p(wi t+1, x i t+1) | ai t = 1, wi t , x i t]
�

(9)

≡
1
θ
∆E log pt+1(wi t , x i t)

That is, the difference in the ex-ante value functions can be written as 1/θ times the (negative

of the) expected effect of a repair this period on next period’s log repair probability. (For a

derivation of this result, see Appendix C.2.) The conditional repair probability is then

p(wi t , x i t) = Λ (−θ g(wi t , x i t) + θρ(x i t) +δ∆E log pt+1(wi t , x i t)) (10)

25Of course, if a technician takes a truck off the road to do a repair, that will affect the odometer mileage.
However, technicians’ repair decisions likely only respond to large differences in mileage (e.g., 250,000 miles
versus 200,000) rather than the relatively small differences that might result from a truck being off the road a
few days while it is repaired.

26 x includes the number of weeks and the number of miles since last repair, both of which, by definition, reset
when a repair is done.

25



As we consider how to bring (10) to the data, note that∆E log pt+1(wi t , x i t) is the difference

of two integrals over the state transition process. With a high-dimensional state, it is not

feasible to flexibly estimate—and, therefore, to integrate over—the state transition process.

However, we show that under Assumption 5, ∆E log pt+1(wi t , x i t) can be expressed exactly in

terms of choice probabilities that are more easily estimated from the data.

Assumption 5. The transition process for state variables (wi t , x i t) and the technician’s conditional

choice probability function p (·, ·) are such that

p (wi t+1, x i t+1) | ai t , wi t , x i t ∼ Beta (µ(ai t , wi t , x i t),ν)

where µ : {0, 1} ×W ×X → R+ and ν ∈ R+.27

Assumption 5 imposes a joint restriction on both the transition process and the choice prob-

ability function p. Such assumptions may, in some contexts, be inadvisable, as it can be difficult

to evaluate their plausibility. However, the Beta distribution is relatively flexible. Any plausi-

ble continuous conditional distribution of p(wi t+1, x i t+1) is likely well-approximated by a Beta

distribution with some parameter values. (For an evaluation of this claim, see Figure 15 in Ap-

pendix D.6.2.) In addition, Assumption 5 allows one of the two parameters of the distribution

to vary arbitrarily with the current state and action.

The benefit of Assumption 5—that it allows ∆E log p(wi t , x i t) to be estimated without esti-

mating the transition process—is derived from the following properties of the Beta distribution:

First, if p ∼ Beta (µ,ν), then the mean of the distribution is E [p] = µ. Second, the expectation

of log p is E [log p] =ψ (µν)−ψ (ν), where ψ is the digamma function. This second property

implies that, under Assumption 5, the expected log of the next period’s choice probability has

a closed-form expression that is a function of the distribution’s two parameters. Since the dy-

namic term∆E log p(wi t , x i t) is a difference of two such expected logs, this means that the dy-

namic term can be expressed in closed form, rather than as an integral over a high-dimensional

state variable:

∆E log p(wi t , x i t) =ψ (µ(0, wi t , x i t)ν)−ψ (µ(1, wi t , x i t)ν)

Apart from Beta (and the closely related Kumaraswamy distribution), we know of no other

distributional assumption that allows for ∆E log p(wi t , x i t) to be written in closed form.28

27Here we use “mean-precision” parameterization of the Beta distribution, as this is more convenient for our
purpose than the more standard (α,β) parameterization. To convert from the former to the latter, α = µν and
β = (1−µ)ν.

28There are of course, a few trivial examples (e.g., pi t+1 ∼ Uniform[a, b]) that would also have this property,
but would impose much more extreme (and probably unrealistic) assumptions on the conditional distribution of
pi t+1.
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The fact that µ parameterizes the distribution’s mean indicates that µ (ai t , wi t , x i t) is equal

to the expectation of the next period’s choice probability, which is identified from the data.

Moreover, this choice probability—despite the high-dimensionality of the state—is much more

credibly estimable than the full transition process.

For a discussion of identification, see Proposition C.2 in Appendix C.2.

6 Estimation

This section describes how we bring the dynamic model presented in the previous section

to the data.

Before we can estimate the dynamic structural model, we must first carry out two pre-

estimation steps. First, in recognition of the fact that our finite data limits the number of pa-

rameters that can be feasibly estimated, we perform a variable selection step, reducing the di-

mension of x from more than 2,000 to 20. For details, see Appendix D.2.2. Second, we estimate

the conditional week-ahead choice probability function µ(at , wt , x t) = Pr (at+1 = 1 | at , wt , x t)
offline using a GBDT model. For details, see Appendix D.2.3. For a full definition of the set of

variables included in w and x , see Appendix D.2.1.

As described in the previous section, Proposition C.2 shows that the cost function g1 and the

technician’s perceived breakdown risk function ρ are nonparametrically identified from choice

data. However, in bringing the model to the data, we introduce functional form assumptions

that limit the number of parameters to be estimated. In particular, we impose that g1 is linear

g1(w) = γ0 +w′1γ1

and that ρ is logistic-linear

ρ(x) = Λ
�

λ0 + x ′λ1

�

where Λ is the logistic function.

We estimate the model using a constrained maximum likelihood approach, estimating the

model’s parameters separately for the pre period and the post period. The constraints we

impose correspond to the two restrictions on beliefs described in Assumption 3.29 With these

29In practice, because of our chosen functional form, having ρ(x) exactly equal to zero is not possible, as the
range of the logistic function is (0,1). Therefore, the constraint that we actually impose is minx ρ(x)≤ 10−8.
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constraints, the optimization problem for each period is as follows:

max
θ ,ν,γ,λ,α

∑

i

logL (ai, wi, x i | θ ,ν,γ,λ) (11)

subject to
1
N

N
∑

i=1

ρ(x i;λ) = π̄

subject to min
x

ρ(x;λ)≈ 0

where L (ai, wi, x i | θ ,ν,γ,λ) =







1− p(wi, x i | θ ,ν,γ,λ) if ai = 0

p(wi, x i | θ ,ν,γ,λ) if ai = 1

Solving this constrained maximization problem numerically is challenging because the objec-

tive function is not convex. This non-convexity arises from the fact that the choice probability

expression (10) features one non-linear function, ρ, inside of another non-linear function,

the logistic function. With this non-convexity in mind, we choose a combination of optimiza-

tion techniques that increase the likelihood of finding the global optimum. These include (1) a

gradient-based momentum algorithm and (2) a multi-start method. To enforce the constraints,

we use the augmented Lagrangian approach. For details of our approach to solving (11), see

Appendix D.4.

For estimation, as well as for the analysis of counterfactuals in Section 8, we assume δ =
0.999. This is, admittedly, small for a weekly discount factor. However, this choice is dictated by

computational considerations; as explained in Section 8, for each counterfactual we analyze,

we must solve a Bellman equation fixed point problem for the ex-ante expected value functions

EV0, EV1. The convergence of value function iteration for such problems becomes substantially

slower as δ approaches 1.

7 Estimates: Breakdown-risk predictions and costs

By estimating the dynamic structural model, we recover two sets of key primitives—technicians’

perceived breakdown risk (ρ) and cost parameters (θ ,γ)—for both the pre and post periods.

In this section, we examine each of these sets of estimated primitives. First, in Section 7.1, we

compare our estimates of technicians’ perceived breakdown risk ρ without PredictFix (pre pe-

riod) and with PredictFix (post period). Evaluating each as a predictor of actual breakdowns,

we find that technicians with PredictFix exhibit a substantially better ability to predict break-

downs. Second, in Section 7.2, we compare the estimated costs for the pre and post periods.

We find that the effective cost ratio in the post period has both a higher mean and a higher
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variance. This finding is consistent with Fact 5 from Section 4.5, which presented suggestive

evidence of such pre-post cost differences and hypothesized that such differences could explain

the seeming contradiction between Facts 2-3 and Fact 4.

For a discussion of model fit, see Appendix D.5.

7.1 The effects of PredictFix on technicians’ predictions

We begin by analyzing our estimates of ρ, the technician’s beliefs about the probability of

breakdown. To understand how PredictFix changes human prediction, we assess the quality

of these beliefs, both with and without PredictFix (ρpost and ρpre, respectively), as predictors

of actual breakdowns. We perform this analysis of beliefs in two ways: First, we again make

use of a tool introduced in Section 4.1—ROC curves—to assess the extent to which Predict-

Fix changes the technician’s ability to order states by riskiness. Second, to understand how

PredictFix changes the calibration of technicians’ beliefs, we estimate a logistic regression of

actual breakdown outcomes on the technician’s perceived breakdown risk.

We begin by generating three different ROC curves, which are summarized in Table 6.

The first two ROC curves speak to the quality of ρpre and ρpost, respectively, as predictors of

Table 6: ROC curve specifications

Predictor Outcome Sample restriction
ρpre Breakdowns ai t = 0
ρpost Breakdowns ai t = 0
π̂ Breakdowns Test sample and ai t = 0

breakdowns. In both, the sample is restricted to the set of truck-weeks without repairs.30 While

our primary interest is in the comparison between ρpre and ρpost, it is also useful to have, as a

benchmark, the ROC curve for a high-quality predictor of breakdowns. To this end, the third

ROC curve speaks to the quality of π̂, our GBDT-based predictor of breakdown risk described

in Section 4.1, as a predictor of actual breakdowns.

These three ROC curves are presented together in Figure 5. We see that the red curve

(corresponding to ρpost) is everywhere above the blue curve (corresponding to ρpre). Recalling

the PPF interpretation of the ROC curve discussed in Section 4.1, this means that ρpost strictly

dominates ρpre as a predictor of breakdowns.

Now comparing the quality of ρpost with that of the benchmark predictor π (illustrated by

the black curve), we see that, while technicians could still improve their prediction of break-

downs, technicians in the post period perform fairly well. Using the AUC as a quantitative
30If a technician does a repair, this likely prevents any potential breakdown, so the potential breakdown out-

come is unobserved when ai t = 1.
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Figure 5: ROC Curves: ρpre and ρpost as predictors of breakdowns
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Notes: This figure illustrates the quality of estimated beliefs ρpre and ρpost as predictors of observed breakdowns.
The ROC curves for pre and post beliefs are the blue and red curves, respectively. A nonparametric benchmark
(out-of-sample fit for our GBDT estimate of π) is included in black.

measure of quality and considering the AUC for π as an upper bound on feasible predictive

quality, we see that with the introduction of PredictFix, the gap between the prediction of break-

downs by technicians and the best possible prediction of breakdowns narrows by 0.704−0.598
0.779−0.598 ≈

59%.

This relatively high quality of ρpost as a predictor of breakdowns is notable not just because it

represents a substantial improvement over the pre period, but also because it suggests that the

model does a reasonably good job of capturing reality. The relationship between ρ and actual

breakdown outcomes is an untargeted moment in the sense that no data on actual breakdowns

was used in the estimation of the model.31 For more on model fit, see Appendix D.5.

In interpreting these results, it is useful to note that an ROC curve only reflects a predictor’s

ability to order states correctly by risk; that is, the ROC curve is invariant to monotone increas-

ing transformations of the predictor. On the one hand, this bolsters the robustness of the ROC

31The only exception is the very minimal contribution via the constraint that Eρ(x) = π̄, which just affects the
mean and should have little or no effect on the extent to which ρ correctly orders states in terms of breakdown
risk.
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Table 7: Logistic regression of actual breakdowns on technicians’ perceived breakdown risk

(1) (2)
Breakdown Breakdown

Λ−1
�

ρpre

�

0.233∗∗∗

(0.0435)

Λ−1
�

ρpost

�

0.814∗∗∗

(0.0764)

Constant -3.198∗∗∗ -0.817∗

(0.218) (0.318)
N 19091 19091

Notes: Standard errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001. This table presents coefficient
estimates for the logistic regression described by equation (12). The two columns correspond to regressions with
the predictors ρpre—the technician’s beliefs without PredictFix—and ρpost—the technician’s beliefs with Predict-
Fix, respectively. A predictor that captured the true risk of breakdown would have intercept zero and slope one.
The estimates show that technician beliefs with PredictFix come much closer to this benchmark.

results in Figure 5; the assumptions required to identify how the technician orders states by

perceived breakdown risk are weaker than those required to fully identify ρ. In particular,

Proposition C.1 in Appendix C.1 shows that, under only Assumptions 1-2, ρ is identified up to

an affine, increasing transformation. This means that the main result of this section—that the

ROC curve for ρpost strictly dominates that for ρpre—is robust to relaxations of the restrictions

on beliefs imposed by Assumption 3. However, the fact that the ROC curve only captures the

extent to which a predictor correctly orders states by risk also means that Figure 5 does not

capture the full picture of how PredictFix changes the quality of the technician’s predictions; in

particular, it does not reflect the extent to which ρpre and ρpost are well-calibrated (i.e., correctly

scaled) predictors of breakdown risk.

To analyze the calibration of beliefs, we estimate logistic regressions of actual breakdown

outcomes on Λ−1 (ρ), the technician’s perceived breakdown risk ρ with the inverse-logistic

transformation applied:

Pr
�

Breakdowni t | ρ ji t

�

= Λ
�

φ0 +φ1Λ
−1
�

ρ ji t

��

(12)

for j = pre, post. Applying the inverse-logistic transformation to beliefs makes the coefficients

more interpretable; if the technician’s beliefs exactly captured the true risk of breakdown (i.e.,

ρ (x) = π (x) for all x), then we would have φ0 = 0 and φ1 = 1.

The estimated coefficients for this regression with ρpre and ρpost are presented in Table 7.

The results show that, while both ρpre and ρpost are statistically significant predictors of break-
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down risk, ρpost—the technician’s beliefs with PredictFix—is much closer to the true breakdown

risk. This finding, combined with the results in Figure 5 above, represents strong evidence that

PredictFix improves the ability of technicians to predict the risk of breakdown.

Note that, in interpreting Table 7, we should keep in mind that deviations of (φ0,φ1) from

(0, 1) could result either from miscalibration or—if there is variation in breakdown risk con-

ditional on ρ ji t—from attenuation bias.32 As we proceed with our counterfactual analysis in

the next section, we will use the results in Table 7 together with the ROC curves in Figure 5 to

tease out the extent to which each of these two explanations plays a role.

7.2 Cost ratio estimates

To better understand the differences in behavior and outcomes between the pre and post

periods, we next explore our costs estimates for the two periods. Figure 6 shows the distribu-

tion of the cost threshold

τ(vi t , x i t) = g(wi t , x i t) +δ∆E log p(wi t , x i t;ν) + εi t

constructed using the estimated cost parameters θ ,γ and the estimated transition-process prim-

itives µ,ν. The inclusion of the dynamic term reflects the fact that this term, like the static cost

terms, shifts the technician’s breakdown risk threshold τ.

Comparing the distributions reveals two differences in effective cost conditions across the

periods. First, on average, the effective cost ratio in the post period (0.115) is greater than that

in the pre period (0.091). Second, the standard deviation of the effective cost ratio is substan-

tially higher in the post period (0.102) than in the pre period (0.072). This difference is driven

by a difference in the estimates of the scale parameter θ for the distribution of idiosyncratic

costs: θpre = 25.4 and θpost = 17.9. Since the standard deviation of the logistic distribution is
πp
3

1
θ , this means that, in the post period, there is

θpre−θpost

θpost
≈ 42% more variation in τ conditional

on (w, x) than there is in the pre period.

Although these differences in estimated effective costs are dramatic, they are—in context—

not altogether surprising. Between the end of the pre period (February 2020) and the begin-

ning of the post period (March 2021), the PFC fleet—like the rest of the world—experienced

the multifarious effects of a global pandemic. Among the most salient of these effects for the

32Such variation would be present if ρ(x) and π(x) responded to variation in x in such a way that there was
not a one-to-one relationship between the two. For example, consider the set X0.01 = {x : ρ(x) = 0.01}. If
π(x) ̸= π(x ′) for some x , x ′ ∈ X0.01, then there would be attenuation bias in the logistic regression results in
Table 7 because there would be variation in the true breakdown risk conditional on perceived breakdown risk.
For a demonstration of attenuation bias in logistic regression, see https://adamharrisphd.shinyapps.io/
logisticregattenuation/.
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Figure 6: Distribution of the cost ratio τ
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Notes: This figure shows the distribution of the threshold τ(vi t) for the pre period (blue) and the post period
(red). Differences in the distributions for the two periods arise from (1) differences in the estimates of the cost
parameters γ0,γ1, (2) differences in θ , the scale parameter for idiosyncratic costs ε, and (3) differences in the
dynamic term ∆E log p(wi t , x i t ;ν).

fleet were changes in the availability of parts. In the context of our model, a part essential

to a repair being unavailable would be represented by the effective cost of the repair being

extremely high (i.e., getting a very high draw of ε). This has both direct effects—part unavail-

ability means that a repair is not done—and indirect effect—even when parts are available, the

prospect of potential unavailability in future periods changes technician behavior, reducing her

breakdown-risk threshold τ.

8 Counterfactual analysis: The value of PredictFix

The previous section showed that when technicians are armed with PredictFix, their behav-

ior reflects a superior ability to predict breakdown risk. In this section, we quantify the value

of the change in technician behavior induced by PredictFix. Unlike the reduced-form evidence

presented in Section 4, these calculations use our cost estimates to control for differences in

cost conditions in the pre and post periods.

To quantify the value of PredictFix, we simulate repair and breakdown histories for three

scenarios. These scenarios parallel the three ROC curves presented in the previous section.

In the first scenario, the technician’s predictions of breakdown risk are given by ρpre (without

PredictFix); in the second, the technician’s predictions of breakdown risk are given by ρpost
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(with PredictFix); in the third scenario, again included as a benchmark of optimal behavior, the

technician’s predictions of breakdown risk are given by π (the objective breakdown risk). In all

three scenarios, we impose the cost conditions of the pre period, as captured by our pre-period

estimates of θ and γ.33 The first scenario, therefore, is a simulated version of the factual pre

period, while the second scenario is a counterfactual where technicians get access to PredictFix

while the cost conditions are held constant. Thus, the difference in outcomes between these

two scenarios speaks to the value of PredictFix as reflected in its effect on technician behavior.

8.1 Preliminary steps: Estimating the transition process

Evaluation of these counterfactuals requires placing additional structure on the transition

process. Recall that the approaches to identification and estimation of the dynamic model

presented in Sections 5 and 6 are tailored to one of our setting’s main challenges: the high di-

mensionality of the state variable. Accurately estimating transition processes in such a setting

is infeasible without strong functional form assumptions. We avoided making such assump-

tions by developing an approach to estimation that required only minimal assumptions on and

knowledge of the transition process. This minimal approach to the transition process, how-

ever, is not sufficient for evaluating dynamic counterfactuals, which requires simulating draws

of the state in period t+1 given the state and technician’s action in period t. Therefore, before

proceeding, we must put some additional structure on the state transitions.

To overcome the challenge of estimating the transition process for the high-dimensional

state variable (w, x), we instead estimate and simulate transitions in terms of a lower-dimensional

object. Recall that the two objects that determine static payoffs are the cost ratio and the break-

down risk. We treat each of these as a component of a two-dimensional state variable, which

we denote (gi t , ιi t), where

gi t = g(wi t , x i t) = γ0 +w′1,i tγ1 + ĝ2

�

w1,i t , w2,i t , x i t

�

ιi t = Λ
−1 (π (x i t)) ,

gi t ∈ R is the average of the cost ratio distribution given wi t , x i t , and ιi t ∈ R is a transformed

version of breakdown risk, respectively.

We model the transitions of g and ι as independent Markov processes:

Assumption 6 (Transition processes). gi t and ιi t evolve as independent Markov processes. For

33We can also do this exercise using post-period cost estimates; doing so produces results that are qualitatively
very similar.
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ιi t , this means

ιi t+1 | ιi t ∼ F ι (· ; ιi t , ai t)

Moreover, the transition process for gi t is AR(1):

gi t+1 = β
g
0 + β

g
1 gi t +η

g
i t+1

where ηg
i t+t ∼ iid N (0,σg).

Operationalizing this assumed transition process for simulating counterfactual scenarios re-

quires estimating the AR(1) parameters β g
0 ,β g

1 ,σg and estimating the conditional distribution

F ι. To allow for flexibility in the transition, we estimate F ι using Gaussian Mixture Regression,

as described by Sung (2004).34 For details, see Appendix D.7.

The goal of our counterfactual analysis is to quantify the costs—both repair costs and break-

down costs—that result from the technician’s choices in each counterfactual. Since the techni-

cian’s choices are determined by ρ, her perceived breakdown risk, rather than the true break-

down risk π, we need to model the relationship between ρ and π. We do this in a simple

reduced-form way:

πi t = Λ
�

φ0 +φ1Λ
−1
�

ρ ji t

�

+ ζi t

�

(13)

or, inversely,

ρ ji t = Λ
�

ιi t −φ0 − ζi t

φ1

�

(14)

Note that equation (13) is identical to equation (12) used in estimating the logistic regression

in Section 7.1, except that, unlike in a standard logistic regression, it includes an error term

ζi t ∼ N
�

0,σ j

�

, which reflects potential variation in the true breakdown risk π conditional

on perceived breakdown risk ρ.35 For each j = pre, post, we find the values of φ j,σ j that

rationalize the AUC and logistic regression results from Section 7.1.

To see how this approach works, first recall that an ROC curve reflects how well a predic-

tor orders states by breakdown risk. This means that the ROC curve for ρ as a predictor of

breakdowns is invariant to changes in the calibration parameters φ0,φ1; it depends only on

34A key advantage of this choice is that the conditional distributions of the next period’sυ is a Gaussian mixture.
This means that expectations over this variable can be evaluated using Guassian quadrature.

35As noted in footnote 32, ζi t does not represent private information about breakdown risk not reflected in
x i t ; rather, it captures in a reduced-form way, the fact that there may be kinds of variation in x i t that affect the
true breakdown risk π(x i t) but which the technician overlooks or does not understand.
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Table 8: Calibrated parameters for relationship between perceived and actual breakdown risk

Pre Post Optimal
σ 2.40 0.283 0
φ1 0.897 0.980 1

Notes: This table presents calibrated values of the parameters σ,φ1 from equation 13, which describes the
relationship between the technician’s beliefs about breakdown risk and the true risk of breakdown. The
parameter σ, which reflects the degree of noise in the relationship, is calibrated by finding the degree of noise
that rationalizes the AUC values for ρpre and ρpost presented in Figure 5. The linear parameters φ, which reflect
the degree of miscalibration of technician beliefs, are calibrated by finding the values that, in combination with
the calibrated σ, rationalize the logistic regression estimates in Table 7.

σ. Thus, for each j = pre, post, we simply find the degree of noise σ j that makes the AUC of

π(x i t) + ζi t as a predictor of breakdowns equal to the AUC of ρ j(x i t) as a predictor of break-

downs.36 Then, given these calibrated values ofσ j and the degree of attenuation bias that they

impose on estimates of the logistic regression (12), we find the values of φ j that rationalize

our logistic regression estimates in Table 7.

The results of this calibration exercise, presented in Table 8, show that PredictFix both

nearly eliminates belief miscalibration (prior to PredictFix, technician beliefs are under-responsive

to breakdown risk) and greatly reduces the variation in beliefs conditional on true breakdown

risk.

In addition to allowing us to simulate drawing states from the transition process, obtain-

ing estimate of the transition process and relationship between ρ and π is also necessary to

compute counterfactual ex-ante expected value functions. Recall from Section 5 that the dy-

namic component of the technician’s payoff is given by the difference in ex-ante expected

value functions, EV1(w, x)− EV0(w, x), which captures the difference in expected future pay-

offs conditional on doing versus not doing a repair in the current period. Our approach to

estimation leveraged the insight that, under Assumption 5, this difference can be written in

terms ∆Ep(w, x), which (expect for the parameter ν) can be estimated directly from tech-

nician choice data. While that approach works well in cases where one observes technicians’

choices, it does not work for counterfactual scenarios, where technicians’ choices in the scenario

of interest are naturally not observed. For our counterfactuals, therefore, we must resort to an

older approach: computing the ex-ante expected value functions EV0 and EV1 by solving the

Bellman equation, a fixed-point problem in the function space. Then, having computed these

functions, we know all the elements of the technician’s payoffs and can therefore simulate

choices.37

36Here, we use π̂ML, the GBDT predictor of breakdown risk constructed in Section 4.1.
37In keeping with the assumption that the idiosyncratic cost shock is iid logistic, we draw εi t ∼ Logistic

�

θpre

�
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Finally, to make the results of our counterfactuals more interpretable, we want to report

costs in dollar terms. However, recall that only the ratio of costs τ is identified from the data.

To convert this to dollars, we choose a value for the breakdown cost. From conversations

with contacts at PFC, we understand that a reasonable value for B would be in the range of

$5,000-$10,000.38 We choose the value B =$5,000 at the low end of that range. If we instead

chose a value of B =$10,000 at the high end of the range, this would simply scale all dollar-

denominated counterfactual results by a factor of 2.

8.2 Counterfactual results: The value of PredictFix

With our estimates of cost, perceived breakdown risk, objective breakdown risk, transition

processes, and ex-ante expected value functions, we can simulate histories of technician de-

cisions for our three scenarios. In all three scenarios, the cost conditions are those of the pre

period, but the scenarios differ in technicians’ perceived breakdown risk. For the three sce-

narios, the perceived breakdown risk is ρpre,ρpost, and π, respectively. For each, we simulate

500,000 truck-years (26 million truck-weeks). From these simulations, we can compute the

frequency of repairs and breakdowns in each scenario. Additionally, since we know the repair

costs and breakdown costs, we can calculate the costs incurred under each scenario.

The simulation results for our three scenarios are presented in Figure 7. In this figure, the

average annual repair costs (on the x-axis) and the average annual breakdown costs (on the

y-axis) are both normalized so that the values are interpreted relative to the optimal scenario

where technicians know the true risk of breakdown. The blue point represents the costs in-

curred by a technician without PredictFix (with beliefs ρpre), and the red point represents the

costs incurred by a technician with PredictFix (with beliefs ρpost). Naturally, we think of the

technician’s objective as minimizing total costs (summing repair costs and breakdown costs);

the dashed diagonal lines represent isocost curves, along which the total cost incurred is con-

stant.

Figure 7 shows that the technician with PredictFix resides on a lower isocost curve than the

technician without PredictFix; in particular, the average annual costs of the former are $240

less than the those of the latter. We interpret this difference as the value of PredictFix, equal

to $240 per truck per year. Comparing the technician with PredictFix to the technician who

knows the true risk of breakdown, the latter has costs that are about $43 lower per truck per

year. Thus, we can say that PredictFix enables technicians to achieve 240
240+43 = 84.8% of all cost

for each truck-week.
38Recall that these figures include not only the costs of labor, materials, and towing, but also the substan-

tial opportunity costs and risk of damage to relationships with customers and drivers that are incurred with an
unanticipated breakdown.
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Figure 7: Repair and breakdown costs with and without PredictFix
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Notes: Points indicate the average annual costs incurred from repairs and breakdowns in each decision-making
scenario. Repair costs are inclusive of ε cost shocks, which account for the negative average repair costs. The
colored lines (which have slope −1) are isocost curves. The black curve represents the production possibilities
frontier, and the region above the PPF (shaded gray) is the feasible region. To construct this PPF, we simulate the
decisions of a technician who knows π and places weight ζ on breakdown costs relative to repair costs for each
ζ ∈ (0,∞). Each point on the PPF is parameterized by a different value of ζ. Naturally, lower iso-cost curves are
better.

savings that could be achieved by improving the quality of decision-making.

Looking at the relative locations of the Pre and Post points in Figure 7 can help us un-

derstand how these cost savings are achieved. Comparing the points in the x-direction, we

see that, perhaps surprisingly, the value of PredictFix comes entirely from a decrease in repair

costs, not a decrease in breakdown frequency. In fact, when we compare the points in the

y-direction, we see that the breakdown costs incurred are actually about $60 higher with Pre-

dictFix than without PredictFix; however, this increase is more than offset by an approximately

$300 reduction in the repair costs incurred.

To dig deeper into these findings, we examine the mistakes technicians make with and with-

out PredictFix. Each panel of Figure 8 plots the repair cost (x-axis, inclusive of ε) and the true

risk of breakdown π (y-axis) for each truck-week where the technician makes a mistake, i.e.,

chooses a different action than the optimal technician (who knows the true risk of breakdown).

The yellow and green regions (labeled a∗ = 0 and a∗ = 1, respectively) illustrate the sets of
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(cost, π) pairs for which a repair is not optimal and for which a repair is optimal, respectively.

The two regions are separated by a black curve, representing the set of states for which the

optimal technician is indifferent between repair and non-repair. Then, the blue points in the

yellow regions represent false positives—instances where the technician did an unnecessary

repair—and the orange points in the green region represent false negatives—instances where

the technician failed to do a repair that was justified.

Figure 8: Mistakes: Costs and breakdown risks with and without PredictFix
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Notes: In each panel, points indicate the repair cost and objective breakdown risk for each truck-week where the
technician makes a “mistake,” i.e., makes a different decision than the “optimal” technician who knows the true
risk of breakdown. Blue points are “false positives,” instances where the technician does a repair that the optimal
technician would not have done. Orange points are “false negatives,” instances where the technician does not do
a repair while the optimal technician would have done one. The yellow and green regions represent, respectively,
the sets of pairs (cost, π) for which the optimal technician would not do a repair and would do a repair. The black
line partitioning the two regions is an approximation of the optimal technician’s indifference curve. The distance
of each point from this indifference curve roughly captures the severity of the mistake.

Comparing the two panels, we see two clear differences in the mistakes made with and

without PredictFix. First, the larger number of points in the left-hand panel indicates that

the technician without PredictFix makes mistakes much more frequently (in 4.3% of all truck-

weeks, as compared to 1.5% for the technician with PredictFix). Second, with PredictFix, the

mistakes the technician does make are much less costly, as indicated by the fact that the points

in the right-hand panel are on average far closer to the black indifference curve than those in the

left-hand panel. This is particularly true for false positives; without PredictFix, the technician

sometimes greatly overestimates the risk of breakdown (her perceived risk exceeds the true

risk by 10pp or more for 2.2% of all truck-weeks). This leads her to do repairs when doing

so is both very costly and not justified by the true breakdown risk. With PredictFix, however,

such costly false positive mistakes are vanishingly rare. The elimination of this kind of mistake

39



accounts for PredictFix’s substantial reduction in repair expenditures, as shown in Figure 7. It

also suggests that the role of PredictFix is not only to help technicians identify when the risk

of breakdown is high, but also to help them identify when the risk of breakdown is low; the

absence of a PredictFix alert on a given truck may enable a technician to refrain from doing a

repair in instances where, without PredictFix, she would have overestimated the breakdown

risk and done an unwarranted repair.

9 Conclusion

This paper studies how human decision-makers use predictive AI tools. We explore this

question using detailed data on repair decision-making from a large fleet of heavy-duty trucks.

In early 2020, the technicians charged with the maintenance of these trucks were given access

to PredictFix, a high-quality AI tool designed to predict truck breakdowns. We study how

technician decision-making changed with the introduction of this tool. Our analysis draws on

rich data that provide insight into every aspect of the technician’s decision-problem: we observe

the universe of repair decisions made by technicians, the timing of AI-generated alerts, and the

minutely detailed, high-frequency data generated by each truck’s network of sensors.

In a descriptive comparison of technician decisions and outcomes before versus after Pre-

dictFix’s introduction, we find that technicians exhibit a statistically significant response to Pre-

dictFix alerts; however, we see no resultant change in key fleet outcomes (repair and break-

down frequency), a finding likely reflective of pandemic-induced changes in cost conditions

concurrent with PredictFix’s introduction.

To quantify the effects of PredictFix while flexibly controlling for changes in costs, we de-

velop a dynamic structural model of technician repair decision-making and describe the con-

ditions under which costs and beliefs are separately identified. While these conditions—and

particularly their restrictions on private information—are unlikely to be satisfied in settings

where decision-making has been studied previously, the richness of our data makes these con-

ditions plausible in our setting. In bringing this model to the data, we build upon the insights

of Hotz and Miller (1993) to develop a new approach to estimating dynamic discrete choice

models with high-dimensional state variables.

Using this method to estimate our model, we find that technicians’ with PredictFix make

better repair decisions, reflecting a substantial improvement in the accuracy of technicians’

beliefs about breakdown risk. Holding cost conditions fixed, the introduction of PredictFix

enables technicians to reduce total maintenance expenditures by $240-$480 per truck per

year; equivalently, PredictFix narrows the cost gap between actual decision-making and op-

timal decision-making by about 85%. These gains come entirely from a reduction in costly and
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unnecessary repairs.

While this paper addresses some key questions about how human decision-makers use AI

tools, other important questions might be addressed by future research. First, it would be useful

to evaluate heterogeneity in the way human agents use predictive AI, particularly since such

heterogeneity has potentially significant implications for labor markets in a world where AI is

widespread. Although this question is beyond the scope of the current paper, it is one that we

hope to pursue in future. With data on technician characteristics, we could ask how the effects

of PredictFix on decision-making differ with, for instance, technicians’ tenure or experience.

By answering this question, we could speak to whether predictive AI is a complement to or

substitute for human experience. Second, while our analysis acknowledges and allows for

incentive and agency problems within the PFC organization, these issues are not the focus of

our paper. We do not attempt, for instance, to estimate the effect of PredictFix on incentive

misalignment or technician risk aversion. Further exploration of the interaction between AI,

decision-making, and principal-agent dynamics would be worthwhile.

Although important future questions remain, this paper represents a key step toward un-

derstanding the real-world effects of predictive AI on important economic decisions made by

humans. In many domains, AI’s ability to predict payoff-relevant variables far surpasses hu-

man ability. Yet, in most domains, human judgment still plays a significant role. While recent

advances in AI have undoubtedly been stunning, there are few settings in which firms have

opted for full automation of important economic decisions. As long as humans remain in the

decision-making loop, the way they—with all their biases and behavioral quirks—interact with

AI systems will continue to determine how this technology shapes economic outcomes.
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A Setting and data appendix

Technician incentives and agency issues As repair decisions are made by the technicians—

agents of PFC—it is natural to ask whether technicians’ objectives are aligned with PFC’s ob-

jective. PFC is aware of, and has taken steps to ameliorate, potential agency issues. Like other

44



private fleets, PFC has historically granted awards to high-performing technicians based on

vehicle outcome measures.39 Yet it is possible that these incentive schemes are not perfectly

effective. Residual agency issues may persist. Moreover, it is possible that the severity of these

agency issues is altered by the introduction of PredictFix.40 In addition, it is possible that a

misalignment of objectives could arise simply because the process determining the firm’s re-

pair and breakdown costs is complicated and not fully understood by technicians. If this is the

case, then technicians’ behavior might reflect their perceived costs, rather than the firm’s actual

costs.

While questions about principal-agent problems and technicians’ objectives are not the fo-

cus of this paper, our analysis nevertheless endeavors to address these issues head on. In our

discussion of identification in Section 5, we show that our model is identified without making

any assumptions about technician preferences or alignment of objectives. This result means

that we can recover and analyze our key object of interest, the technician’s perceived break-

down risk function ρ, regardless of these features of technician behavior. These features do,

however, affect the interpretation of our counterfactual analysis, something we discuss further

in Section 8.

Unit of analysis: Truck-week Both our reduced-form analysis (Section 4) and our estimation

of the structural model (Section 6) require us to discretize time. The two natural period lengths

we considered were a day and a week.

We decided to define a period as a week rather than a day primarily because of the low

frequency of breakdowns. As shown in Table 2, about 1.5% of truck-weeks have an engine

breakdown. If we instead analyzed the data at the daily level, less than 0.25% of truck-days

have an engine breakdown. The latter is such a low base rate that it would have presented

challenges. In particular, obtaining a high-quality measure of π(x)—which we estimate by

training a GBDT model—would have been infeasible, as most ML classification models (in-

cluding GBDTs) perform poorly when the data is so extremely imbalanced.

Data cleaning: Avoiding reverse causality Yet aggregating at the weekly level also presents

a challenge: concerns about reverse causality. When we aggregate all seven days of a week, x t

reflect information that occurred on seventh day of the week, while at = 1 might indicate that

the technician decided to do a repair on the first day of the week. Suppose that, in the course

39We do not have access to detailed information about these incentive programs.
40For instance, consider a technician without PredictFix does too many repairs because risk aversion leads her

to be overly concerned about preventing breakdowns. Once this technician has PredictFix, she might feel that she
need not be as risk averse, since if PredictFix does not produce an alert, this gives her “cover” against criticism in
the case of a breakdown.
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of doing repairs, technicians always took an action that triggered a particular fault code, which

was included in x . This would tend to bias our estimates of beliefs: Since this particular fault

code would almost always be accompanied by a repair, the model estimates would indicate

that, when technicians saw this this particular fault code, they interpreted it as an indicator

of high breakdown risk. In fact, the causality would go in the opposite direction, as it is the

technician’s action that causes the fault.

One surefire way to avoid this problem is to not include any same-week data in x , i.e.,

have x t only reflect fault and sensor data from weeks t − 1, t − 2, .... However, this would

introduce other biases: if technicians actually respond to real-time rather than past-week data,

this strategy would indicate an erroneously low degree of technician responsiveness to x t .

We instead choose a less extreme approach: We begin with a vector x t that includes both

same-week and past-week fault and sensor information. We then train—as described in Section

D.2.1—a GBDT model, using (wt , x t) to predict at , whether a repair is done in week t. We

then inspect the set of variables with the highest “gain,” i.e., those that contribute the most

to the GBDT model’s predictions. Using institutional knowledge (and a bit of common sense),

we identify variables that fall into one of two suspect categories: (i) the variable’s gain is

disproportional to any genuine information about breakdown risk it could possibly contain,

and (ii) the variable seems likely to be affected by actions taken by a technician in the course

of a repair.

We identify one set of variables that clearly falls into both categories: fault codes referring

to the telematics system or telematics connectivity. Several such fault codes are among the

variables with the highest gain; moreover, it seems plausible that certain classes of repairs

involve the telematics system being disconnected from its power source.

In addition to these telematics fault codes, we identify several sensors that fall into cate-

gories (i) or (ii). It is slightly more difficult to evaluate these sensor variables, as it is not easy

to identify what patterns in these variables the GBDT model (which is not easily interpretable)

is picking up on. However, several variables with high gain refer to, for instance, the maximum

weekly recorded level of a coolant or exhaust fluid. It seems plausible that this is the result of

technicians “topping off” these fluids while doing repairs.

Due to these concerns, our model estimation and training of GBDTs excludes from x t all

variables referring to week-t telematics-related faults and all variables referring to week-t

sensor measurements. While the latter is perhaps overly restrictive, we feel that it is warranted,

as any bias resulting from reverse causality would mean that our estimates ρ would no longer

have the desired interpretation.
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B Appendix for Section 4

B.1 A primer on ROC curves

For any continuous predictor (in our case, π̂(x)) of a binary outcome y (in our case, an

engine breakdown), the ROC curve gives a visual representation of the predictor’s quality by

plotting two measures of quality for each of the various binary predictors that could be formed

using the continuous predictor.

For each threshold η ∈ [0, 1], we can form a binary predictor:

bηi = 1{π̂i > η}

where bηi = 1 means that we predict a “positive outcome” (y = 1; in our case, a breakdown)

for observation i and bηi = 0 means that we predict a negative outcome (y = 0; in our case,

no breakdown). How well bη predicts actual outcomes y is captured by two statistics: the

True Positive Rate (TPR) and False Positive Rate (FPR). The TPR indicates what proportion of

actual positives are (correctly) predicted to be positive, and the FPR indicates the proportion

of actual negatives that are (incorrectly) predicted to be positive:

TPR(η) =
# True Positives

# Actual Positives
=

∑

i bηi yi
∑

i yi

FPR(η) =
# False Positives

# Actual Negatives
=

∑

i bηi (1− yi)
∑

i(1− yi)

In choosing η, one would face a tradeoff between a higher TPR and a lower FPR. As one

decreases η (chooses a less conservative threshold for predicting that an observation is “posi-

tive”), one may capture more true positives, but also sweep in more false positives. The ROC

curve represents a sort of “production possibilities frontier” for binary classifiers by plotting

(FPR(η), TPR(η)) for all η ∈ [0, 1].
As with a standard PPF, a higher curve is better (in this case, better in terms of predictive

quality). Therefore, the area under the ROC curve (AUC-ROC or AUC) is a widely used measure

of the a predictor’s quality. In addition to this geometric interpretation, the AUC measure also

has a useful probability interpretation:

AUC= Pr
�

π̂i1 > π̂i0 | yi1 = 1, yi0 = 0
�

That is, if one randomly chose a positive observation and a negative observation, the AUC gives
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the probability that the former has higher predicted π̂ than the latter.

From both the geometric and probability interpretations, we can see that a perfect (“oracle”)

predictor would have AUC = 1; on the other hand, a predictor that is no better than random at

predicting outcomes would have AUC = 0.5 (and would have an ROC curve on the 45-degree

line).

B.2 Discussion of PredictFix alert quality

B.3 The role of additional information and technician discretion

Consider a technician who makes optimal repair decisions and has access to PredictFix.

Does she always do a repair when a truck has a PredictFix alert? Or does she incorporate

additional information contained in the full state of the truck (x) to make her decision?

Additional information contained in x might be valuable to this technician for two reasons:

(1) the non-optimality of PredictFix alerts and (2) variation in costs.

(1) Combining x and PredictFix to form an optimal classifier In the analysis above, we

showed that PredictFix alerts are very good binary binary classifiers, but still sub-optimal ones.

The fact that they lie below—rather than on—the ROC curve (Figure 3) indicates that they

do not fully exploit all of the breakdown-relevant information in x . Thus, having access to

x itself would allow the optimal technician to form a more informative binary classifier than

PredictFix alone.

(2) Variation in cost threshold Setting aside issue (1), let us suppose that PredictFix alerts

were an optimal binary classifier, so that they fully exploited the breakdown-relevant informa-

tion in x . This would mean that, for some threshold π∗,

PredictFixi ⇔ π(x i)≥ π∗

From the model of technician decision-making (Section 5), the optimal technician’s decision

rule also has a threshold form:

ai = 1 ⇔ π(x i)>
Cost of repair

Cost of breakdown
≡ τ(v)

This implies that whether additional information from x is useful in determining the techni-

cian’s decision depends on τ(v, x). Table 9 summarizes the technician’s decisions as a function

of PredictFix alerts and the cost threshold. If there is a PredictFix alert and the cost of a repair
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Table 9: Optimal decisions given optimal binary signal

τ(v, x)≤ π∗ τ(v, x)> π∗

PredictFix alert Repair ?
No PredictFix alert ? No repair

is relatively low (τ(v, x)≤ π∗), then the technician will do a repair. If there is not a PredictFix

alert and the cost of a repair is relatively high (τ(v, x) > π∗), then the technician will not do

a repair. In these two cases, the binary PredictFix output contains all of the information the

technician would need to decide whether to do a repair. In the other two cases, however, the

binary PredictFix output is insufficient. Additional information on breakdown risk contained

in x would be useful to decide whether a repair is optimal.

This discussion highlights that—even if PredictFix were an optimal binary predictor of

breakdowns—it would still be optimal for technicians to exercise discretion. Rather than me-

chanically responding to a PredictFix alert by doing a repair, the technician should combine

it with other information on costs and the observable state of the truck to arrive at a repair

decision.

B.4 Appendix for Fact 3

B.4.1 Response to medium-severity PredictFix alerts
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Figure 9: Event Study: Response of repairs to (predicted) medium-severity PredictFix alerts
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Notes: This figure plots the estimated coefficients {β k
τ} from equation (1). βpre

−1 and βpost
−1 are normalized to zero,

though the inclusion of week fixed effects means that differences in the average probability of repair across the
pre and post periods are absorbed.

B.4.2 Event study with actual PredictFix alerts

In Section 4.3, we present estimates from an event study estimated on both pre- and post-

period data and using predicted PredictFix alerts. An alternative approach would be to estimate

an event study using actual rather than predicted PredictFix alerts and using data only from the

post period (the period where actual PredictFix alerts are observed):

Repairi,t = α0 +
5
∑

τ=−3

βτPredictFixi,t−τ +αi + γt + εi,t (15)

where Repairi,t is an indicator for a technician doing an engine repair on truck i in week t and

PredictFixi,t is an indicator for a PredictFix alert for truck i in week t. αi and γt represent truck

and week fixed effects, respectively.

The estimates of coefficients {βτ} are presented in Figures 10 and 11 for high-severity

and medium-severity alerts, respectively. In these figures, we see that the probability that a

technician does a repair is 19.7pp (13.5pp) higher in the week of a high-severity (medium-

severity) PredictFix alert as compared with the week before an alert. However, this is not in

itself evidence of technicians responding to PredictFix; it is possible that, instead, this reflects

technicians responding to patterns of fault codes and sensor measurements that are correlated

with PredictFix alerts. The analysis in the main text and in Appendix B.4.1 uses predicted
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Figure 10: Event Study: Response of repairs to (actual) high-severity PredictFix alerts
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Notes: This figure plots the estimated coefficients {βτ} from equation (15). β−1 is normalized to zero. The
regression is estimated using only observations from the post period, as there are no PredictFix alerts in the pre
period.

Figure 11: Event Study: Response of repairs to (actual) medium-severity PredictFix alerts
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Notes: This figure plots the estimated coefficients {βτ} from equation (15). β−1 is normalized to zero. The
regression is estimated using only observations from the post period, as there are no PredictFix alerts in the pre
period.
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PredictFix alerts and data from the pre period to tease out responses to alerts versus responses

to other signals.

C Model appendix

C.1 Partial identification result

Proposition C.1 (Partial identification of ρ). Under Assumptions 2-1, ρ is identified up to an

affine, increasing transformation. That is, ρ̃ is identified, where ρ̃(x) = s(ρ(x)) for some un-

known monotone increasing function s : [0,1]→ R.

Proof. See Appendix C.3.1.

This lemma means that, with only Assumptions 2-1, we can recover a function ρ̃ that tells us

how technicians order states in terms of risk. Since ρ̃ is a monotone increasing transformation

of ρ,

ρ̃(x)≥ ρ̃(x ′) ⇔ ρ(x)≥ ρ(x ′)

While we introduce additional assumptions in Section 5, this result implies that a critical part

of our analysis—the ROC-based evaluation of how PredictFix affects the technician’s ability to

predict breakdowns in Section 7.1—is robust to violations of those later assumption.
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C.2 Dynamic model details

Finite dependence Using our logistic-distributed cost shock assumption, the difference of

ex-ante value functions can be written as a sum of three terms:

EV1(wi t , x i t)− EV0(wi t , x i t) = E[v1(wi t+1, x i t+1) | wi t , x i t , ai t = 1]

−E[v1(wi t+1, x i t+1) | wi t , x i t , ai t = 0]

−
1
θ
E[log(p(wi t+1, x i t+1)) | wi t , x i t , ai t = 1]

+
1
θ
E[log(p(wi t+1, x i t+1)) | wi t , x i t , ai t = 0]

= (E[g(wi t+1) | wi t , x i t , ai t = 0]−E[g(wi t+1) | wi t , x i t , ai t = 1])
︸ ︷︷ ︸

∆Eg(wi t ,x i t )

(16)

+
�

E[EV1(wi t+1, x i t+1) | wi t , x i t , ai t = 1]−E[EV1(wi t+1, x i t+1) | wi t , x i t , ai t = 0]
�

︸ ︷︷ ︸

∆EV (wi t ,x i t )

+
1
θ
(E[log(p(wi t+1, x i t+1)) | wi t , x i t , ai t = 0]−E[log(p(wi t+1, x i t+1)) | wi t , x i t , ai t = 1])
︸ ︷︷ ︸

∆E log p(wi t ,x i t )

The first equality is an application of the Hotz and Miller (1993) inversion. The second equality

uses the fact that v1(w, x) = −g(w) +∆EV1(w, x). The three terms in equation (16) capture

the expected effect of a repair on, respectively, the next period’s cost ratio, the next period’s

ex-ante expected value function for a = 1, and the log probability of repair in the next period.

Thinking about estimation, the first and third terms are manageable, but the second one is not.

Yet, under Assumption 4, the first and second terms are zero.

Identification Identification of the parameter ν requires one additional assumption:

Assumption 7. There exists some state (w, x) such that

sign
�

d2

dw jd x k
f (w, x)
�

̸= sign
�

d
dw j

f (w, x)
d

d x k
f (w, x)
�

where f (wt , x t) = E [log p(wt+1, x t+1)|wt , x t , at = 0], and x k and w j are the elements of x and

w1 referred to in Assumption 4, i.e., x k satisfies Assumption 4(i) and w j satisfies Assumption 4(ii).

While at first glance, the plausibility of this Assumption is perhaps a bit difficult to evaluate,

note that this condition need only hold for one state (w, x) ∈ W × X . Given that W × X is a

very high-dimensional space, it seems very likely that there is some state (w, x) that satisfies

the condition.
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Proposition C.2 shows that the second distributional parameter, ν, along with the static

payoff primitives—θ ,γ, and ρ—is identified from the technician’s dynamic repair choices.

Proposition C.2. Consider the dynamic choice model. Suppose g1(·) is a differentiable function

whose domain is a compact connected set W1, and Assumptions 2-5 and Assumption 7 are satisfied.

If the support of w1 conditional on each x ∈ X is equal to W1, then θ ,ν, µ(·, ·), g(·, ·) and ρ(·)
are identified.

Proof. See Appendix C.3.3.

Taking stock of assumptions The most substantive restrictions that we have imposed are

as follows: First, in Assumption 1, we asserted that there is no private, breakdown-relevant

information observable to the technician but not to us. Second, in Assumption 3, we asserted

that the technician knows the mean breakdown risk and believes the minimum breakdown

risk to be zero. Third, in Assumption 5, we asserted that the conditional distribution of the

period-ahead choice probability is distributed according to the Beta distribution.

While the above assumptions are necessary for identification and/or estimation of the dy-

namic model, in other important respects, we have left technician behavior unrestricted. First,

we have not asserted that the technician’s objective is aligned with that of the firm. If agency

problems exist or if the technician misunderstands the process that determines repair or break-

down costs, this poses no issue for us in terms of our identification and estimation of the model.

Second, we have not imposed significant restrictions on technician preferences. In particular,

whether technicians are risk-averse, risk-neutral, or risk-seeking has no bearing on our ability

to identify or estimate the model.

If there is a misalignment of objectives or if technicians have non-risk-neutral preferences,

this matters only insofar as it affects the interpretation of τ(v, x) = g(w, x)+ε. If the technician

is risk neutral, then τ this has the interpretation of the ratio of the technician’s perceived cost

of repair to the technician’s perceived cost of breakdown. If, furthermore, the technician’s

objective is aligned with that of the firm, then τ has the interpretation of the ratio of the true

cost of repair to the true cost of breakdown.
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C.3 Proofs

C.3.1 Proof of Proposition C.1

Proof. First, θα is identified from technicians’ responsiveness to the cost shifter affecting only

the monetary component of costs:

d
dw2

log
p(x , w)

1− p(x , w)
= −θα

d
dw2

g2(w1, w2, x)

Since p and g2 are known, θα is identified.

Next, without loss of generality, we can rewrite

g1(w1) = γ0 + g̃1(w1)

where g̃(w0
1) = 0 for some w0

1. Then, θ g̃1 is identified from technicians’ responsiveness to cost

shifters:

d
dw1

log
p(x , w)

1− p(x , w)
= −θ∇ g̃1(w1)

This gradient, together with the initial condition θ g̃(w0
1) = 0, means that the function θ g̃1 is

identified.

Then, since the log-odds ratio log p(w,x)
1−p(w,x) and the functions θ g̃1(w1) and θαg2(w1, w2, x)

are identified, so is their sum:

log
p(w, x)

1− p(w, x)
+ θ g̃1(w1) + θαg2(w1, w2, x) = −θγ0 + θρ(x)≡ ρ̃(x)

Since θ > 0, ρ̃ is an affine, increasing transformation of ρ.

C.3.2 Proof of Proposition 1

Proof. Recall that the proof of Proposition C.1 showed that

ρ̃(x) = −θγ0 + θρ(x) (17)

is identified. From here, we must prove that, under Assumption 3, we can disentangle this

function’s constituent parts, separately identifying θ ,γ0, and ρ.
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Note that the mean and minimum of ρ̃(x) can be written as

Ex ρ̃(x) = −θγ0 + θExρ(x)

min
x

ρ̃(x) = −θγ0 + θ min
x

ρ(x)

Writing this in matrix form,

�

−1 Exρ(x)
−1 minx ρ(x)

�

︸ ︷︷ ︸

A

�

θγ0

θ

�

=

�

Ex ρ̃(x)
minx ρ̃(x)

�

(18)

From Assumption 3, Exρ(x) and minx ρ(x) are known. Moreover, the matrix A is invertible as

long as Exρ(x) ̸=minx ρ(x), so this system of equations identifies θ and γ0. It follows that the

function ρ is also identified from equation (17).

C.3.3 Proof of Proposition C.2

Proof. Step 1: Identification of µ(·, ·, ·) and ν Recall from equation (10), that the conditional

probability of repair can be written as

p(wt , x t) = Λ (−θ [g(wt , x t) +ρ(x t)] +δ∆E log p(wt , x t))

Using Assumption 5 and the facts about the Beta distribution described in Section 5, this can

be rewritten as

p(wt , x t) = Λ
�

− θ [g(wt , x t) +ρ(x t)] +δ [ψ (νµ(0, wt , x t))−ψ (νµ(1, wt , x t))]
�

(19)

Moreover, from the facts about the Beta distribution described in Section 5, we know that

Eµ(at , wt , x t) = E [p (wt+1, x t+1) | at , wt , x t] = Pr (at+1 = 1 | at , wt , x t)

The conditional probability on the right-hand side is identified directly from the data.41 There-

fore, the function µ is identified.

Returning to equation (19), let us consider the derivatives of the log-odds ratio log p(wt ,x t )
1−p(wt ,x t )

.

Under the assumptions of the model, for the jth element of x and the kth element of w1, the

41This is true because, under Logistic distribution assumption, ε has full support. So for any state (wt , x t), we
observe both repairs and non-repairs, and therefore observe choices made in the following periods.
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cross-partial comes only from the dynamic terms:

d2

dw j
t d x k

t

log
p(wt , x t)

1− p(wt , x t)
= δ

d2

dw j
t d x k

t

∆E log p(wt , x t)

= δν
d

dw j

�

d
d x k

µ(0, w, x)ψ(1) (νµ(0, w, x))−
d

d x k
µ(1, w, x)ψ(1) (νµ(1, w, x))

�

= δν
�

µ0
w j xkψ

(1)
�

νµ0
�

+ νµ0
w jµ

0
xkψ

(2)
�

νµ0
�

−µ1
w j xkψ

(1)
�

νµ1
�

− νµ1
w jµ

1
xkψ

(2)
�

νµ1
�

�

where µ0
z and µ1

z denote the derivatives of µ(0, w, x) and µ(1, w, x) with respect to some vari-

able z. Letting x k be the element of x that satisfies Assumption 7(i), i.e., that x k “resets” after

a repair, implies that µ1
xk = 0 for all (w, x). This means that the last two terms are zero, so the

cross-partial becomes

d2

dw jd x k
log

p(w, x)
1− p(w, x)

= δν
�

µ0
w j xkψ

(1)
�

νµ0
�

+ νµ0
w jµ

0
xkψ

(2)
�

νµ0
��

(20)

Everything in this equation except ν is known. We now prove that there is a unique ν that

satisfies this equation by proving that the expression on the right-hand side is strictly monotone

in ν.

Remark 1 (Properties of the polygamma functions). The so-called “polygamma” functions

ψ,ψ(1),ψ(2), . . . have the following properties:

• If k is odd, then ψ(k) is strictly decreasing on (0,∞).

• If k is even, then ψ(k) is strictly increasing on (0,∞).

A consequence of these properties is that, since µ0,µ1 > 0, νψ(1)
�

νµ0
�

is strictly decreasing

on (0,∞) and ν2ψ(2)
�

νµ0
�

is strictly increasing on (0,∞).

Now we use make use of the technical condition imposed by Assumption 7(iii): there exists

some (w, x) such that

sign
�

µ0
w j xk

�

̸= sign
�

µ0
w jµ

0
xk

�

If µ0
w j xk < 0< µ0

w jµ
0
xk , then the right-hand side of (20) is strictly increasing in ν. If µ0

w j xk > 0>

µ0
w jµ

0
xk , then the right-hand side of (20) is strictly decreasing in ν. In either case, the right-hand

side of (20) is strictly monotone in ν. This means that there is a unique value of ν ∈ (0,∞)
that satisfies this equation, so this equation identifies ν.
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Step 2: Identification of ρ,θ , and γ0

Now that δ∆Ep(w, x) is known, subtracting it from the log odds ratio leaves us with a residual

that is a function of x:

k(w, x)≡ log
p(w, x)

1− p(w, x)
−δ∆E log p(w, x)

= θ [−g(w, x) +ρ(x)]

The rest of the proof follows exactly the proof of identification in the static model (see C.3.2

above).

D Empirical appendix

D.1 Data cleaning

Of the data cleaning steps we perform, two are particularly important, as each reduces our

sample size. First, we must deal with the fact that data for certain trucks is intermittently

missing. Because this missing data is most often the result of PFC’s historical data storage

practices, we drop all missing truck-weeks from our analysis. Second, while most repairs are

completed within a few days, a repair can occasionally stretch on as a series of work orders

completed over as long as several weeks. To deal with this issue, we collapse each such work

order series into a single repair or breakdown event occurring at the beginning of the series.

Moreover, we drop from our analysis the three weeks following every repair or breakdown

event.

D.2 Estimation appendix

D.2.1 w and x: Defining and selecting variables

We begin by defining the objects in the data that correspond to the variables w (cost shifters)

and x (state of the truck). Next, to make it feasible to take our model to the data, we must first

reduce the dimensionality of x , an extremely high-dimensional vector describing the state of

the truck. To accomplish this, we use a machine learning-based variable selection procedure.

Additional x variables As described in Section 3.2, x includes a wide array of variables

derived from truck-generated data (i.e., sensor measurements and fault codes) and the truck’s
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Table 10: Variable definitions

Model Data
w1: General cost shifters Capacity variables:

- # open work orders at facility
- # trucks assigned to facility

Other variables:
- Facility indicators
- Month indicators

w2: Tangible cost shifters Hourly wage (facility-month average)

x: Breakdown predictors Sensor and fault variables, maintenance history:
See Table 1 in Section 3.2.

Predicted PredictFix variables (from GBDTs):
- High priority
- Medium priority

Notes: This table describes the full set of potential state variables used in estimation. First, the table presents the
set of w variables are potential shifters of repair costs. Second, the table expands the set of variables x relevant to
predicting breakdown risk outlined in Table 1. Relative to Table 1, this expanded set includes the two predicted
PredictFix variables generated as the output of trained GBDT models (see Section 4.3).

maintenance history. As we bring the model to the data, we add one additional set of variables

relating to PredictFix alerts.

Rather than including indicators for actual PredictFix alerts in x , we instead include the

predicted PredictFix measures described in Section 4.3; in particular, we let x include the two

continuous outputs of the GBDTs trained to predict (a) high-priority PredictFix alerts and (b)

medium-priority PredictFix alerts. Because actual PredictFix alerts occur only in the post pe-

riod, this approach allows us to maintain symmetry in estimation between the pre and post

periods. Note that, since these predictors are functions of the fault, sensor, and maintenance

history variables—which are observable to the technician in both periods—including these pre-

dictors in x is both appropriate and valuable in trying to understand how PredictFix changes

behavior.

Defining w variables Recall that w represents the set of variables that might affect τ, the ratio

of the cost of doing a repair to the cost of a breakdown. As we bring the model to the data,

we allow w to include variables related to facility capacity—facility’s current number of open

work orders and total number of trucks—as well as facility and month indicators. The month

indicators are likely to be particularly important given the likely pandemic-induced changes in

patterns of demand and availability of parts that occurred between the pre and post periods.

To obtain an estimate of the tangible cost function g2(w1, w2, x), we make use of the internal
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accounting costs in PFC’s maintenance records set to control for the effect of fault codes, sensor

measurements, and cost-related variables on the tangible component of costs. We estimate the

function using a GBDT regression model trained to predict the tangible cost of a repair. The

reason we use these predicted tangible costs rather than the costs observed in the data are two-

fold: First, we observe costs in the data only when a repair actually occurs; in estimating the

model, however, we need to know what these costs would have been if a repair had occurred.

Second, the costs observed in the data are realized repair costs, which may differ from the

technician’s expected repair costs at the time she makes the repair decision. The predicted

ĝ2 corresponds to the expectation of costs that a technician might form based on observed

cost-related variables and truck-generated data.

While the function g2 is in principle identified, we have some concerns in practice about the

fidelity of our estimated ĝ2 to true expected tangible costs. First, the costs that we observe in

the maintenance records are internal accounting costs. From conversations with members of the

PFC fleet management team, we understand that these numbers are not necessarily represen-

tative of monetary costs. For instance, the maintenance records compute a work order’s labor

costs using an hourly wage. This wage, however, does not correspond to the actual marginal

cost of labor, as (1) technicians are salaried, not hourly, and (2) the wage is adjusted to include

various elements of the facility’s overhead. Second, perhaps in part due to this difference be-

tween actual costs and accounting costs, our ability to predict these costs is relatively poor: the

out-of-sample pseudo-R2 is 0.251.42

These concerns about the quality of our estimate ĝ2 would pose a serious problem if we

were relying on variation in estimated tangible costs to identify the scale parameter θ . To avoid

having the quality of ĝ2 affect the estimate of this critical parameter, we introduce an additional

degree of freedom into the model: a parameter α that scales ĝ2 and which we estimate within

the model. Then, the analog of g2 that we use in estimation is g̃2(w1, w2, x) = α ĝ2(w1, w2, x),
where ĝ2 is the GBDT predictor of tangible repair costs.43

D.2.2 Variable selection

The number of parameters of our model naturally increases with the dimension of x . Given

our sample sizes (4,406 truck-weeks in the pre period and 16,925 truck-weeks in the post

period), it is not feasible to estimate the model using the full set of more than 2,000 x variables

42Contributing to the poor fit may be the relatively small sample size. We observe tangible repair costs only
when an engine repair is done (only about 10% of truck-weeks). This small sample size potentially worsens
several problems inherent to applying machine learning estimators to finite data (e.g., overfitting, underfitting,
regularization).

43The inclusion of this additional parameter also accounts for the fact that in the model g2 represents the ratio
of tangible repair costs to breakdown costs, whereas the estimated ĝ2 captures only the numerator of this ratio.
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described above. Therefore, we begin with a variable-selection procedure that limits x to be

20-dimensional.

To help identify the x variables most important in determining repair decisions, we train a

GBDT model to predict repairs using the full set of x and w variables as predictors. We then

select the twenty x variables to include in xmodel by taking those with the highest “gain,” i.e.,

those that contribute the most to the GBDT model’s prediction. These are the x variables we

will use in the estimation of our model. This GBDT model, whose predicted repair probabil-

ities we call p̂ML, alsos serve as a nonparametric benchmark against which we compare the

goodness-of-fit of our parametric model (see Appendix D.5).

D.2.3 Estimation of µ, the conditional expectation of next period’s repair probability

As described in Section 5.2, one element of the dynamic component of the technician’s

payoff is captured by the term ∆E log p(w, x). This term can be written as a function of two

primitives, a constant ν and a function µ : 0, 1×W ×X → R+. From Remark ??(i), the latter

can expressed as:

µ(at , wt , x t) = E [pt+1 (wt+1, x t+1) | at , wt , x t]

= Pr (at+1 | at , wt , x t)

Constructing the dynamic term, therefore, requires having an estimate of the expected proba-

bility of a repair next week, given this week’s choice (at) and state (wt , x t).

To accomplish this, we once again cross-validate, train, and calibrate a GBDT model, this

time to predict at+1 using at , wt , and x t as predictors.44 The output of this process is a flexible

function that can be interpreted as the desired conditional probability.

D.3 Machine learning

In the course of our analysis, we make use of machine learning models—in particular,

gradient-boosted decision trees (GBDTs)—several times to learn the relationships between

high-dimensional sets of predictors and binary outcome variables. First, in Section 4.1, we

describe training a GBDT model to predict breakdowns based on states of the truck x . This

trained model serves as the basis for π̂(x), our objective measure of breakdown risk, some-

thing that we use throughout our reduced-form and structural analysis. Second, in Section

4.3, we describe training a pair of GBDT models, which use the observable state of the truck

44In recognition of the fact that p may differ between the pre and post periods, we also include a post-period
indicator as a predictor in training this GBDT.

61



x to predict PredictFix alerts. We train one model to predict high-priority alerts and another

to predict medium-priority alerts. We use binary classifiers formed from these trained GBDTs’

output to estimate the event study regression (1) that captures technicians’ responsiveness to

these predicted alerts in both the pre and post periods. In addition, the continuous Predict-

Fix predictors from these trained GBDTs are included as x-variables in the estimation of the

structural model. Finally, we train a GBDT model to predict whether a technician does a repair

based on the observable state of the truck x and cost shifters w. The out-of-sample goodness

of fit of this GBDT model serves as a benchmark against which we evaluate the fit of our para-

metric model. (See Figure 12.) This subsection describes the details of how all of these GBDT

models are trained.

Implementation To estimate our GBDTs, we use XGBoost, an open-source framework for

training regularized GBDTs.(Chen et al., 2015) We make use of this framework using the R

package xgboost.(Chen et al., 2019)

When predicting binary outcomes (breakdowns, PredictFix alerts, repairs), we train each

GBDT to maximize the log-likelihood objective function. When predicting a continuous out-

come (realized tangible repair costs), we train the GBDT regression model to minimize the

sum of squared errors.

Sample splitting, cross-validation, and hyperparameters When training a flexible machine

learning model, a key concern is overfitting. It is easy to train a model that simply “memorizes”

the data it is trained on, but is very poor in its ability to generalize to examples not included

in the training data. For this reason, we implement several forms of regularization and select

the appropriate degree of regularization using cross-validation.

At the outset, we randomly split our sample into two groups: 5/7 of the data become the

training set, while the remaining 2/7 is the test set. The test set is not used in any way when

training the model; it is simply reserved for evaluating the fit of the model after all training is

complete.

The training set is further split into five random sub-samples, which are used for cross-

validation. Each of the five is held out in turn, with the fifth is used as a sort of temporary

test set. Then, analyzing the out-of-sample fit for each, we average over the five samples

and take this as a measure of the generalizability of the fitted model. We repeat this cross-

validation procedure many times for a large set of hyperparameters. This procedure allows us

to determine the appropriate degree of regularization that resolves the bias-variance tradeoff

in a way that results in the best out-of-sample fit.
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The set of hyperparameters we consider is as follows:

(η,γ, max depth) ∈H× Γ ×M

where H = {exp (−10) , exp (−9.5) , exp (−9) , . . . , exp (−2.5) , exp (−2)}, Γ = {0,5, 10}, and

M = {2,4, 8}. η is the learning rate, γ is the minimum loss reduction threshold for further

partitioning on a node of the tree, and max depth indicates the maximum allowed depth for

any tree. More conservative (i.e., more regularized) models result from lower η values, higher

γ values, and smaller max depth values.

Recalibration Despite the fact that we train our GBDTs to maximize the log-likelihood, it is

not necessarily appropriate to interpret the GBDT outputs as probabilities. This is because,

despite our careful cross-validation, the way we resolve the bias-variance tradeoff is likely

imperfect, possibly resulting in some degree of either overfitting or underfitting. Either of

these will lead to miscalibration in the model output. This is a well-known problem with certain

classes of machine learning models, including GBDTs.(Niculescu-Mizil and Caruana, 2005) The

two most common solutions to this problem—isotonic regression and Platt scaling—involve

applying a monotone transformation to the model output. We opt for isotonic regression,

using the training set to fit a monotone, nonparametric regression of actual outcomes (e.g.,

breakdowns) on the GBDT output. When we then apply this estimated monotone function to

GBDT outputs, the result is a well-calibrated fitted probability.

D.4 Constrained maximum likelihood estimation

We solve the constrained maximum likelihood problem (equation 11) using an the Aug-

mented Lagrangian approach. Letting β = (θ ,ν,γ,λ) denote the set of parameters to be esti-

mated, this approach makes use of the following augmented Lagrangian function

L (β ,λ,κ) = f (β) +λ′g(β) +
κ

2
g(β)′g(β) (21)

where λ is a vector of Lagrange multipliers, κ is a hyperparameter, and g(β) represents a vector

of the constraint functions:

g(β) =

�

Exρ(x)−Exπ(x)
min∗x ρ(x)−min∗x π(x)

�

(22)

where min∗x f (x) denotes the mean of the bottom 0.025 percent of values of f (x) in the distri-

bution of x . This choice reflects the fact that the gradient of this min∗ function is, in practice,
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better behaved than that of the true minimum function.

We then iterate over two steps:

Algorithm 1: Augmented Lagrangian approach

1 Choose initial parameters β0;
2 while Not converged do
3 Primal update: β ← argminβ L (β ,λ,κ);
4 Dual update: λ← λ+ κg(β);
5 end

Note that, for any λ,κ, the function L (β ,λ,κ) is nonconcave in β . (This is true event if

λ = 0⃗ and κ = 0 because our choice probability function nests the non-linear function ρ in

another non-linear function Λ.) This means that the primal update step requires solving a non-

convex optimization problem. To make it more likely that we converge to the global, rather

than a local, optimum in the primal step, we use a momentum-based method with momentum

parameter 0.9. For each iteration within the primal update step, the step direction update is

that of gradient descent, whose computation is made possible by the fact that the gradient of

(21) can be computed analytically.

We experiment with a wide range of values for the hyperparameter κ: K = {23k for k =
1,2, . . . , 12}. Ultimately, we select the smallest value inK that yields an optimum with |Exρ(x)−Exπ(x)|<
10−5 and
�

�min∗x ρ(x)−min∗x π(x)
�

� < 10−5. For the pre period, this is κ = 218; for the post pe-

riod, it is κ= 224.

Finally, to speed up estimation, we start with an initial parameter vector β0 drawn from a

favorable region of the part of the parameter space. To find such a region, we use Algorithm

2, which uses logistic regression to estimate a simplified version of our model. The logistic

regression in step 5 of the algorithm estimates a model that differs from ours in two respects:

(i) it does not have the constraints on beliefs from Assumption 3, and (ii) it has linear beliefs,

αx0 + x ′αx1. Steps 7-8 adjust the resulting coefficients to account for these differences. This

procedure yields a parameter vector β0 that, in practice, seems to be in the neighborhood of the

global optimum β∗. Adding noise to β0 and using a multi-start procedure helps us overcome

the fact that our objective function is non-convex.

Even with this initialization expedient, estimation is still computationally expensive: Using

five-fold parallelization of gradient computation, estimation takes about 20 hours for each

value of κ, for each period (pre, post), and for each initial β0.

D.5 Goodness of Fit
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Figure 12: Model Fit: ROC curves for our model and a nonparametric model
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Notes: The green curve is an ROC curve that illustrates the quality of the estimated model’s predicted repair
probability p(w, x) as a predictor of actual (out-of-sample) repairs. For comparison, the ROC curve for a
nonparametric model is also included: this model, a GBDT model, is trained to predict repairs based on (w, x).
Since this model is non-parametric, it represents an upper bound on the goodness of fit of any model given the
data available to us. (This claim assumes the optimality of model selection, and hyperparameter tuning. Further
improvements in out-of-sample fit may be possible using a different ML model (e.g., a neural network), better
feature engineering, or better tuning of hyperparameters.)
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Algorithm 2: β initialization

1 for ν ∈ H do
2 Run a logistic regression of repair choices ai t on (wi t , x i t ,∆E log p(wi t , x i t;ν).;
3 end
4 ν0← argminν∈H |coefficient on ∆E log p(wi t , x i t;ν)−δ| ;
5 Run a logistic regression of repair choices ai t on (wi t , x i t ,∆E log p(wi t , x i t;ν). Call the

resulting vector of coefficients α̂.;
6 γ1← α̂w (the components of α̂ corresponding to w);
7 Adjust α̂x (the coefficients on x) and the constant so that the constraints are

approximately satisfied by the linear beliefs: α̂x0 + x ′α̂x .;
8 Convert these linear belief parameters to logistic belief parameters by running a linear

regression: of Λ−1
�

α̂x0 + x ′i tα̂x

�

on x i t . The resulting coefficients are our initial guess
for λ.;

Figure 13: ROC curves for ML predictors of PredictFix alerts
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Notes: This figure shows out-of-sample ROC curves illustrating the quality of our GBDT predictorsÛPredictFix
High

andÛPredictFix
Medium

as predictors as actual High- and Medium-severity alerts, respecitvely.
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Figure 14: Does PredictFix continue to train during the post period?
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(b) Medium severity alerts
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Notes: This figure shows out-of-sample ROC curves illustrating the quality of our GBDT predictorsÛPredictFix
High

andÛPredictFix
Medium

as predictors as actual High- and Medium-severity alerts, respecitvely. Each subfigure
shows two ROC curves: Red curves and red AUC values are generated using our baseline GBDT model
predicting PredictFix alerts (these curves and AUC values the same as those shown in Figure 13). In contrast,
the black curves and black AUC values are for an augmented GBDT model that—in addition to all of the
predictor variables of the baseline model—is also allowed to use a numeric week identifier as a predictor. The
minimal differences between the black and red curves/AUC values suggests that the PredictFix algorithm is
static; that is, it does not change over the course of our post period.
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D.6 Results appendix

D.6.1 ROC curves and Blackwell informativeness

Proposition D.1. Suppose that information structures A and B give rise to classifiers with ROC

curves characterized by TPRA(FPR) and TPRB(FPR). If the ROC curve for A is (weakly) above

the ROC curve for B, then information structure A is (weakly) more Blackwell informative than

information structure B.

Proof. Suppose the cost ratio is τ. (For the purposes of this proof, we can, without loss of

generality, normalize the cost of a breakdown to 1.) Then, given information structure i ∈
{A, B}, the agent’s best feasible expected utility for a given FPR is

EUi(FPR) = − (1− TPRi(FPR))−τFPR

= −1+ TPRi(FPR)−τFPR

Let FPR∗i ≡ argmaxFPREUi(FPR) and EU∗i = EUi(FPR∗i ). Then,

EU∗B = −1+ TPRB(FPR∗B)−τFPR∗B
≤ −1+ TPRA(FPR∗B)−τFPR∗B
≤ −1+ TPRA(FPR∗A)−τFPR∗A
= EU∗A

where the first inequality comes from the fact that A’s ROC curve being strictly above B’s ROC

curve means that, for any FPR, TPRA(FPR)> TPRB(FPR). The second inequality comes from the

definition of FPR∗A: it maximizes EUi(FPR), so −1+TPRA(FPR∗A)−τFPR∗A ≥ −1+TPRA(FPR∗B)−
τFPR∗B.

This shows that, for any cost ratio τ, information structure A gives (weakly) higher expected

utility. This inequality is strict if the ROC curve for A is strictly above the ROC curve for B at

FPR∗B. Information structure A is therefore (weakly) more Blackwell informative.

D.6.2 Evaluating Assumption 5
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Figure 15: Examples: Simulated week-ahead choice probabilities versus Beta distribution
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(b) Example: ai t = 0, gi t = 0.1,ρi t = 0.014
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(c) Example: ai t = 0, gi t = 0.04,ρi t = 0.05
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(d) Example: ai t = 0, gi t = 0.24,ρi t = 0.004
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Notes: This figure provides an example test of the compatibility of Assumption 5—which states that
p(wi t+1, x i t+1) | ai t , wi t , x i t is distributed as a Beta random variable—with the transition process estimated in
Section 8.1. We compute the simulated distribution (red) by taking draws from the estimated transition process
for ai t = 0, gi t = 0.1,ρi t = 0.014 and applying the choice-probability function p. The fitted distribution (blue) is
computed analytically by fitting the parameters of the Beta distribution to this simulated distribution and
plotting the resulting pdf.
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D.6.3 Further evaluation of the effect of PredictFix on prediction quality

While ROC curves are one tool for comparing the quality of predictors, they do not paint a

complete picture; in particular, ROC curves only assess predictors’ ability to order observations

by riskiness. The calibration of a predictor’s values are also important. With this in mind, we

additionally compute a goodness-of-fit statistic more widely used in economics which captures

both of these dimensions: the likelihood.

For each predictor ρpre,ρpost, and π, we compute the average log-likelihood as follows:

1
N

N
∑

i=1

[breakdowni logρ(x i) + (1− breakdowni) log (1−ρ(x i))]

and similarly for π. The results—computed using the same sample restrictions used in the

construction of the ROC curves—are presented in Table 11.

Table 11: Average log-likelihood of breakdown outcomes as predicted by ρpre,ρpost, and π

Predictor Log-likelihood
ρpre -0.0751
ρpost -0.0698
π -0.0671

Notes: This table shows the (mean) log-likelihood of observed breakdown outcomes using three different sets of
probabilities (i.e., predictors). The first two, ρpre and ρpost, are the estimates of technicians’ perceived breakdown
risk from the model, estimated using pre-period and post-period data, respectively. The third is π, the objective
breakdown probability measure generated as the output of the GBDT model trained to predict breakdowns. For
the sample restrictions used in the calculation of each, see Table 6.

These results again show a substantial improvement: the quality of predictions by the tech-

nician with PredictFix is closer to the objective benchmark π than it is to the the predictions

of the technician without PredictFix.

D.7 Counterfactuals appendix

Gaussian mixture regression We use the Gaussian mixture regression method of Sung (2004)

to estimate two different conditional distributions: F ι|at = 0 and F ι|at = 1. The estimation

procedure for a Gaussian mixture regression of y on x is summarized below:

First, we suppose that the vector (x , y) is distributed as a mixture of M Gaussians, i.e., its
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pdf is

fX ,Y (x , y) =
M
∑

m=1

κmφ (x , y;µm,Σm)

where {κm} are weights with
∑M

m=1κm = 1. We estimate {κm,µm,Σm} using the EM algorithm

(Dempster et al., 1977).45

Then, the distribution of y conditional on an observed value x is

fY |X (y|x) =
M
∑

m=1

ωm(x)φ (x;µmX ,ΣmX )

where the mixing weights {ωm} are derived using Bayes’ Rule:

ωm(x) =
κmφ (x;µmX ,ΣmX )
∑M

m′=1κm′φ (x;µm′X ,Σm′X )

45To carry out the EM algorithm, we use the Julia package GaussianMixtures.
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